
PHYSICAL REVIEW E 104, 044406 (2021)

Inferring gene regulation dynamics from static snapshots of gene expression variability
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Inferring functional relationships within complex networks from static snapshots of a subset of variables is
a ubiquitous problem in science. For example, a key challenge of systems biology is to translate cellular het-
erogeneity data obtained from single-cell sequencing or flow-cytometry experiments into regulatory dynamics.
We show how static population snapshots of covariability can be exploited to rigorously infer properties of gene
expression dynamics when gene expression reporters probe their upstream dynamics on separate timescales. This
can be experimentally exploited in dual-reporter experiments with fluorescent proteins of unequal maturation
times, thus turning an experimental bug into an analysis feature. We derive correlation conditions that detect the
presence of closed-loop feedback regulation in gene regulatory networks. Furthermore, we show how genes with
cell-cycle-dependent transcription rates can be identified from the variability of coregulated fluorescent proteins.
Similar correlation constraints might prove useful in other areas of science in which static correlation snapshots
are used to infer causal connections between dynamically interacting components.

DOI: 10.1103/PhysRevE.104.044406

I. INTRODUCTION

A large body of experimental work has quantified signif-
icant nongenetic variability in living cells [1–8]. Harnessing
the information contained in this naturally occurring variabil-
ity to infer molecular processes in cells without perturbation
experiments is a long-standing goal of systems biology. How-
ever, measuring the spontaneous nongenetic variability of
only one cellular component does not have sufficient dis-
criminatory power to distinguish between models of complex
cellular processes with many interacting components [9]. For-
tunately, progress in experimental techniques has made it
possible to measure multiple components simultaneously. For
example, covariances between mRNA and protein levels have
been used to test hypotheses about translation rates in bacteria
[10].

Despite improvements in experimental methods, it remains
technically challenging to measure multiple different types
of molecules in the same cell. More feasible, and thus more
common, are experiments that measure multiple levels of the
same type of molecule, e.g., measuring different mRNA levels
using sequencing techniques [11] or measuring abundances
of proteins using fluorescence microscopy [12]. Such ex-
periments have motivated dual-reporter approaches in which
correlations between identical copies of reporters responding
to a common upstream signal are used to characterize sources
of variability within cellular processes [12–14].

Previous work focused on splitting the total observed vari-
ability into intrinsic and extrinsic contributions under the
assumption that reporters are identical in all intrinsic proper-
ties. However, actual experimental reporters are never exactly
identical. For example, commonly used fluorescent proteins
differ enormously in their maturation half-lives ranging from

minutes to hours [15]. We show that despite such asymme-
tries, gene expression reporters can be used to rigorously
detect closed-loop control networks from correlation mea-
surements. Furthermore, we show that the inherent asymmetry
of reporters can in fact be exploited to our advantage. Because
reporters that differ in their intrinsic dynamics respond to
their shared upstream input on different timescales, their vari-
ability contains information about the unobserved upstream
dynamics even when we have access to only static popula-
tion snapshots. For example, we show how asymmetric dual
reporters can be used to distinguish periodically varying de-
terministic driving from stochastic upstream noise.

The utility of these results lies in interpreting experimental
data even when only a small part of a complex regulatory
process can be observed directly. Instead of trying to model
all of the many direct and indirect steps of gene expression
regulation, we analyze entire classes of systems in which we
specify only some steps but leave all other details unspecified.
This approach allows us to derive inequalities that constrain
the space of behavior that could possibly be observed across a
population of genetically identical cells within these classes,
regardless of the details of the unspecified parts. These in-
equalities are in terms of coefficients of variation (CVs) and
correlation coefficients of reporter levels x and y, engineered
to readout components of interest

CVx :=
√

Var(x)

〈x〉 , ρxy := Cov(x, y)√
Var(x)Var(y)

,

where angular brackets denote population averages. Such
population statistics are experimentally accessible from
static snapshots of cellular populations that have reached a
time-independent distribution of cell-to-cell variability. If a
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FIG. 1. Feedback in gene regulation affects the space of possible mRNA covariability. (a) We consider all stochastic processes in which two
components X and Y are made with an identical, but unspecified, rate. This rate can depend in any way on a cloud of unknown components
u(t ), which in turn can depend in arbitrary ways on the number of X and Y molecules. The shared production rate of X and Y , together
with first-order degradation of X and Y with respective lifetimes τx and τy, are the only specified parts within this arbitrarily large network, as
defined in Eq. (1). (b) Space of possible covariability for different values of the lifetime ratio T := τy/τx . All systems must satisfy ρxy(1 + T ) �
CVx/CVy + T CVy/CVx corresponding to the area below the orange dashed line. Allowing for feedback (gray dots), the entire space below
the orange dashed line is accessible. In the absence of feedback (blue dots), ρxy is additionally constrained by Eq. (2), corresponding to the
region between the orange solid lines. Dots are stochastic simulation data for specific models of coregulated genes within the class defined
in Eq. (1). Plotted is a subset of simulations with arbitrary density to demonstrate the accessibility of the constrained regions. Blue and gray
curves are exemplary toy models (Appendix G) that illustrate the effect of decreasing transcription rate variability (blue) or increasing feedback
strength (gray). (c) Experimental setup to detect feedback in the regulation of a native gene of interest geneX . The native and reporter genes
are regulated by identical promoters in the same cell. If the covariability of the transcripts X and Y of such genes falls outside the open-loop
constraint of Eq. (2), we can conclude that the gene of interest geneX regulates its own transcription. To maximize the discriminatory power of
the approach the reporter geneY should be engineered to be a passive readout of transcription without significantly affecting gene expression.

measurement violates our inequalities, one of our assumptions
must be false, regardless of how the unspecified part of the
system behaves. This way mathematical constraints can be
used to deduce features of gene expression.

While our results are motivated by methods in experimen-
tal cell biology to understand gene expression dynamics, they
apply to any reporters embedded in a dynamic interaction
network, subject to the specified production and elimina-
tion fluxes considered here and may thus be more broadly
applicable.

II. DETECTING GENE REGULATION FEEDBACK FROM
STATIC SNAPSHOTS OF POPULATION HETEROGENEITY

Cells employ both open-loop regulation or closed-loop
feedback to control cellular processes [16]. Here we show
how to infer the presence of closed-loop feedback for any
molecule within a network, by introducing an additional re-
porter molecule into the system. After describing the key
theoretical result, we detail the experimental setup to detect
feedback control in gene regulation from mRNA levels or
fluorescent protein measurements. In brief, our results apply
to dual-reporter genes that are engineered to share an unspec-
ified but identical transcription rate. This assumption defines
our class of models and needs to be experimentally ensured
through appropriate genetic engineering in combination with
self-consistency checks, such as indistinguishable reporter

distributions, as reported in, for example, [4,12,13,17]. Fur-
ther experimental considerations are discussed in Sec. IV.

A. Mathematical correlation constraints
for open-loop dual reporters

Motivated by the transcriptional dynamics of coregulated
genes, we consider a generic class of systems in which two
cellular components X and Y are produced with a common
(but unspecified) time-varying rate and are degraded in a first-
order reaction, with average lifetimes τx and τy, respectively,

x
R(u(t ))−−−−−−→ x + 1, y

R(u(t ))−−−−−−→ y + 1,
(1)

x
x/τx−−−−−−→ x − 1, y

y/τy−−−−−−→ y − 1,

where the transcription rate can depend in any way on a cloud
of unknown components u(t ), which in turn can depend in
arbitrary ways on the number of X and Y molecules, denoted
by x and y. While we characterize the stochastic reactions
of X and Y , the dynamics of all other cellular components
remain unspecified [see Fig. 1(a)]and the resulting dynamics
need not be Markovian or ergodic in X and Y . A related
class of stochastic processes has been previously considered
to analyze mRNA-protein correlations in gene expression [9],
whereas here we analyze correlations between coregulated
transcripts.
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Previous work established universal probability balance
relations that constrain the stationary state distributions of
stochastic processes [18]. For the above class of systems,
these relations translate the specified reactions of Eq. (1) into
an underdetermined system of equations for (co)variances
(see Appendix A). Though this system of equations cannot
be solved due to the unspecified parts of the dynamics, not all
dual-reporter correlations ρxy are accessible for all variability
ratios CVx/CVy. For example, the correlation of any system
is bounded by the correlation of two reporters that respond
deterministically to their upstream input (Appendix A). When
the two reporters respond to their upstream input on unequal
timescales, their correlations are constrained as illustrated by
the orange dashed lines in Fig. 1(b) that bound all systems
for a given value of T := τy/τx. In Fig. 1 and throughout
the paper, numerical simulations of specific stochastic mod-
els and parameters establish that the inequalities are tight,
i.e., that the entire bounded regions are accessible. For il-
lustration, we plot a subset of simulations with arbitrarily
chosen sampling density, along with the analytically proven
constraints.

The space of possible correlations is restricted much
further for open-loop systems in which upstream variables
regulate the reporter production rates but are not affected
by them, corresponding to all possible systems in Fig. 1(a)
in which X and Y do not affect the unspecified cloud.
For all such systems, we can derive additional constraints
by considering the hypothetical average of an ensemble of
stochastic dual reporters conditioned on the history of their
upstream influences. While these conditional averages are
typically experimentally inaccessible, they mathematically
constrain the measurable (co)variances. We find (see Ap-
pendix B) that the correlations of cellular components X
and Y that are regulated through an open-loop process must
satisfy

∣∣CVx
CVy

− T CVy

CVx

∣∣
1 − T

� ρxy with T := τy/τx, (2)

where without loss of generality we assume that T � 1, i.e.,
that Y is the faster reporter. Figure 1(b) shows the above
open-loop constraint of Eq. (2) as orange solid lines, for
specific values of T . Note that, in the symmetric limit T → 1,
Eq. (2) reduces to ρxy � 0 and CVx = CVy, as intuitively
expected.

Any system whose measured (co)variability falls outside
the region defined by Eq. (2) must be regulated through
closed-loop feedback. Violations of this constraint can thus be
used to experimentally detect the presence of feedback based
on static population variability measurements without the
need for perturbations. Figure 1(b) shows the (co)variability
of simulated systems with feedback (gray dots) and without
feedback (blue dots), illustrating that only systems with feed-
back can fall outside the region bounded by orange solid lines,
violating the open-loop constraint of Eq. (2). The position
of a system outside the open-loop constraint can be used to
quantify a heuristic feedback strength and provides additional
information to distinguish positive from negative feedback
(see Appendix B 2).

B. Experimentally exploiting mRNA correlations
to detect feedback

Equation (2) can be exploited through an experimental
setup analogous to previously engineered circuits in which
coregulated genes reportedly satisfied the assumptions of
Eq. (1) and transcripts were counted with single-molecule
fluorescence in situ hybridization (smFISH) [17,19]. To detect
feedback regulation of a gene of interest, geneX , a reporter
geneY should be introduced whose expression is under the
control of an identical copy of the promoter of geneX [see
Fig. 1(c)]. The precise sequence of the reporter gene is unim-
portant as long as its transcript Y is sufficiently different
from the transcript X of the gene of interest to avoid cross
hybridization by RNA probes. This can be achieved, e.g., by
making the reporter gene sequence a scrambled version of the
gene of interest.

Using smFISH, transcripts X and Y can be measured si-
multaneously at the single-cell level [20]. Simple population
snapshots of cell-to-cell variability then determine whether
experimentally observed CVx, CVy, and ρxy violate Eq. (2).
If this open-loop constraint is violated we can conclude that
geneX must directly or indirectly affect its own production
rate.

If a system falls inside the region defined by Eq. (2) we
cannot say whether it is regulated through feedback or not [see
Fig. 1(b)]. That is because systems with infinitesimally weak
feedback are fundamentally indistinguishable from open-loop
processes. To detect significant feedback in geneX , it is ad-
vantageous to ensure the reporter geneY is not involved in
the same feedback regulation. This could, e.g., be achieved
by removing the start codon from geneY so its mRNA is not
translated, thus preventing the protein of geneY from exert-
ing any feedback control. Furthermore, by ensuring that the
lifetime of the second reporter transcript is comparable to
that of the gene of interest we can minimize the accessible
area defined by Eq. (2) and thus maximize the discriminatory
power of the approach.

Note that only relative abundances are necessary to deter-
mine CVx, CVy, and ρxy. The above steps can thus be applied
to data from single cell sequencing techniques. Additionally,
severe violations of Eq. (2) can potentially be detected already
from sequential rather than simultaneous measurements of X
and Y : If their ratio of CVs falls outside the interval [T, 1] then
Eq. (2) must be violated regardless of the value of ρxy. When
analyzing genes with potentially unknown mRNA lifetime,
the ratio of mRNA lifetimes T can be inferred from pairwise
correlation measurements between three reporter genes, as
detailed in Sec. IV.

C. Experimentally exploiting fluorescent protein
correlations to detect feedback

Similar constraints can be derived to interpret gene ex-
pression data in which fluorescent fusion proteins are used
to quantify gene expression [4]. In this case the experimental
readout involves a fluorescent maturation step in addition
to transcription and translation. While this maturation step
is often well approximated as exponential [15], its lifetime
differs significantly between commonly used fluorescent pro-
teins. For example, the maturation half-lives of mCerulean,
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(a) (b)

FIG. 2. Feedback in gene regulation affects the possible covariability of fluorescent protein measurements. (a) As before, X and Y
correspond to coregulated mRNA, but we now explicitly include the dynamics of immature fluorescent proteins denoted by X ′ and Y ′, as
well as mature fluorescent proteins X ′′ and Y ′′. Because fluorescent proteins are typically stable and are thus effectively diluted with a common
degradation time set by the cell cycle, we focus on gene expression dynamics that is symmetric apart from the maturation step. The asymmetry
between the coregulated genes is then entirely characterized by the ratio of average fluorescent maturation times Tm := τmat,y/τmat,x . (b) Without
feedback control (blue dots), fluorescence correlations are constrained to the region between the orange dashed and solid lines, the latter
corresponding to the bound of Eq. (3). Allowing for feedback (gray dots), the entire region becomes available. Correlations in fluorescence
levels can thus be used to detect causal feedback in gene regulation from static population snapshots. Dots are selected numerical simulations
of specific fluorescent reporter systems within this class that illustrate the full accessibility of the region constrained by the analytically proven
bounds.

mEYFP, mEGFP, and mRFP1 are 6.6, 9, 14.5, and 21.9 min,
respectively [15]. In order to detect gene regulatory feedback
from (co)variability data in such an experimental setup, we
extend our previous class of systems to explicitly account for
protein translation and maturation events [see Fig. 2(a)]. In
this parallel cascade system X ′′ and Y ′′ represent the level of
mature fluorescent proteins.

Crucially, open-loop systems in which none of the gene
products directly, or indirectly, affect their transcription rate
must additionally satisfy

max

⎛
⎝Tm

CVy′′
CVx′′

− CVx′′
CVy′′

1 − Tm
, 0

⎞
⎠ � ρx′′y′′ ,

CVx′′

CVy′′
� 1, (3)

where Tm := τmat,y/τmat,x is the ratio of maturation times be-
tween the two fluorescent proteins (see Appendix E). The
left boundary of this region is mathematically identical to the
previous bound of Eq. (2), but now applied to the statistics
of fluorescence levels X ′′ and Y ′′. The new right-hand bound
CVx′′ � CVy′′ broadens the region accessible to open-loop
processes due the additional intrinsic degrees of freedom of
this class of systems. Figure 2(b) illustrates the tightness of
these bounds (orange solid lines) for Tm = 0.5, where dots
correspond to simulated systems with (gray) and without feed-
back (blue).

Moreover, analogously to the mRNA correlations, all pos-
sible fluorescence correlations for open-loop systems are con-
strained by ρx′′y′′ (1 + Tm) � TmCVx′′/CVy′′ + TmCVy′′/CVx′′ .
Correlations of systems with feedback can break this bound,
as shown by the gray dots in Fig. 2(b). This is because
in the limit of infinitesimally small maturation times and
mRNA fluctuations, the system becomes identical to Fig. 1(a)

with T = 1, which has unbounded correlations as shown in
Fig. 1(b).

Fluorescent proteins can thus be used to detect whether a
given gene regulates its own production as follows. Consider-
ing gene Z as the native gene of interest, two recombinant
genes, gene Z–GFP and gene Z–RFP (or other spectrally
distinguishable pairs), would be engineered into an isogenic
cell population under the control of the same (but distinct)
promoter as gene Z . The transcripts of gene Z–GFP and gene
Z–RFP then correspond to X and Y in Fig. 2(a), as they are
transcribed with identical rates. The level of mature fusion
proteins X ′′ and Y ′′ can be read out at the single-cell level
with fluorescence microscopy, and from the observed CVx′′ ,
CVy′′ , and ρx′′y′′ we can detect violations of the open-loop
constraint (3).

If necessary, the discriminatory power of this approach
can be increased by introducing a third fusion protein with
a different fluorescent maturation time to eliminate the un-
known internal degrees of freedom and determine how much
variability is generated through transcriptional, translational,
or maturation events (see Appendix J 3).

In modeling this parallel cascade system, we assume the
gene expression dynamics of the two fusion proteins are
identical apart from the fluorescent maturation step. This is
motivated by the experimental setup in which we use the same
native protein fused to two different fluorescent proteins. The
absence of further asymmetries, e.g., caused by codon usage,
translation initiation, or reporter crosstalk, would need to be
established experimentally. Traditionally, this has been done
by comparing the distributions of reporter variability for re-
porters that are claimed to be identical in their transcriptional
and translational dynamics [4,12,13,17]. Note that the class of
systems defined in Fig. 2(a) is in fact a subset of a much larger
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class of systems in which the key specified part is that there is
a final maturation step in a symmetric but otherwise unspec-
ified intrinsic cascade of arbitrary steps (see Appendix D),
thus allowing for a cascade of sequential post-translational
modifications that occur before the maturation step.

So far we have considered arbitrary values of T to allow for
the experimental reality that reporters are never completely
identical. Our next results show that T �= 1 is not just a
nuisance but can be exploited to infer the dynamics of the
transcription rate of open-loop systems.

III. DISTINGUISHING STOCHASTIC FROM
DETERMINISTIC TRANSCRIPTION RATE VARIABILITY

A fundamental issue when interpreting cell-to-cell variabil-
ity is that we generally do not know whether a component’s
variability is due to stochastic upstream noise or whether a
component is driven by deterministic variability [21]. Next we
show how we can distinguish the two types of dynamics from
static population snapshots of asymmetric gene expression
reporters.

A. Mathematical correlation constraints for stochastic
transcriptional noise

Focusing on the class of systems defined in Eq. (1) in
the absence of feedback, we next show how snapshots of
dual reporters can be used to infer temporal properties of the
unobserved production rates. To discuss periodic driving in
cells we consider the stationary state autocorrelation of the
transcription rate

A(s) := 〈R(t + s)R(t )〉 − 〈R(t + s)〉〈R(t )〉
Var[R(t )]

.

We define a production rate as periodic if this autocorrelation
A(s) becomes negative for some s. In other words, the period-
icity of the driving has to be strong enough such that the rate
of production is negatively correlated with itself some time
later. Conversely, we define upstream variability as stochastic
if the autocorrelation of the unobserved transcription rate is
non-negative everywhere [see Fig. 3(a)].

Fourier analysis of the dynamics of X and Y conditioned on
the histories of their production rates shows (Appendix C) that
not all systems can exhibit fluctuations everywhere within the
region defined by Eq. (2). Components that are stochastically
driven are additionally constrained by

√
T � CVx

CVy
. (4)

Sequential measurements of CVx and CVy from static snap-
shots of X and Y can thus discriminate between deterministic
and stochastic transcription rates when CVx < CVy

√
T with-

out access to time-series data or directly measuring the
unobserved upstream dynamics. Figure 3 illustrate this dis-
criminatory power with simulated systems in which genes that
are periodically driven (blue dots) can fill the entire region
defined by Eq. (2) (yellow solid lines), whereas genes that
are driven stochastically (red dots) are further constrained by
Eq. (4) (black dashed line).

A pair of asymmetric (T < 1) coregulated reporters in an
open-loop system can exhibit perfect correlations (ρxy = 1)
in two distinct regimes [see Fig. 3(b)]. First, when the up-
stream variability is much slower than both τx and τy, the
reporters adjust rapidly to their quasistationary states such that
y(t ) = T x(t ) at all times, and thus CVx = CVy. The second
regime occurs when production rates oscillate rapidly such
that the upstream signal enslaves the reporters into a transient
regime where their different response times simply shift their
average dynamics. This second regime is not accessible by
reporters that are driven stochastically. Instead, in the limit
of infinitely fast stochastic variability, dual-reporter systems
approach CVx/CVy → √

T corresponding to the bound of
Eq. (4). Where on the right-hand side a stochastically driven
system falls can be used to infer the timescale of the upstream
fluctuations (Appendix C).

Inferring upstream dynamics from static snapshots is pos-
sible because the reporters probe their upstream dynamics on
different timescales. In fact, in the hypothetical limit of an
infinite number of reporters responding to an upstream signal
on all timescales, the autocorrelation of the upstream signal is
entirely determined by static measurements of its downstream
variability. That is because knowing a signal’s downstream
variability on all timescales effectively determines the Laplace
transform of its autocorrelation (see Appendix C).

B. Experimentally exploiting mRNA correlations
to detect periodic transcription rates

The constraint of Eq. (4) can be exploited to detect periodic
transcription rates, in experiments in which the promoter of a
gene of interest is used to independently drive the expression
of two non-native passive gene expression reporters [17,19].
The details of the two reporter genes are not important as long
as their transcripts have unequal lifetimes, and their products
are not involved in any cellular control. Both criteria can be
satisfied, e.g., by using a random sequence to encode the first
reporter and combining another random sequence with an
mRNA stabilizing motif to encode the second reporter. This
motif could be a 5′ stem-loop structure in the case of prokary-
otic cells or a carbohydrate recognition domain sequence in
eukaryotes [22,23]. Transcript levels of the two reporter genes
then correspond to our components X and Y . Figure 3(d) (left
panel) illustrates this mRNA reporter setup.

Because sequential measurements of CVx and CVy suffice
to detect violations of Eq. (4), the two reporters X and Y do
not need to be expressed simultaneously and can be measured
independently at the single-cell level, e.g., using smFISH [24].
Systems satisfying Eq. (4) can be driven by either stochastic or
periodic transcription rates, but any violation strictly implies
the existence of periodic upstream variability. To detect oscil-
lations it is advantageous to use sufficiently long-lived mRNA
reporters such that 2π

√
τxτy is comparable to or larger than

the period of the upstream signal. This is demonstrated by
the arrowed curves in Fig. 3(c) corresponding to exemplary
oscillating and stochastic systems (defined in Appendix G)
for varying τy and fixed τx. This oscillating system crosses
into the discriminatory region when 2π

√
τxτy is greater than

the period of the upstream oscillation. Furthermore, Fig. 3(c)
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FIG. 3. Periodic transcriptional variability can be distinguished
from stochastic variability without experimental access to transcrip-
tion rates and without following individual cells over time. (a) In
a noisy cellular milieu, the autocorrelation of a periodic signal is
not perfectly periodic but decays. We thus operationally define a
signal as periodic when its periodicity is strong enough such that
its autocorrelation function becomes negative at some point. Con-
versely, we classify signals with non-negative autocorrelations as
stochastic. (b) The left side of the open-loop region defined by Eq. (2)
is only accessible by mRNA reporters that are driven by oscillatory
production rates rather than purely stochastic upstream variability.
The boundary (black dashed) line is defined by Eq. (4). (c) Se-
quential measurements of mRNA reporters X and Y , or fluorescent
proteins X ′′ and Y ′′, can be used to discriminate between stochastic
and oscillatory transcription rates if a system violates the respective

suggests an advantageous range for T to detect oscillations:
0.25 � T � 0.5.

C. Experimentally exploiting fluorescent protein correlations
to detect periodic transcription rates

To detect transcriptional oscillations using coregulated flu-
orescent reporter proteins, we consider systems as defined in
Fig. 2(a) in the absence of feedback. Just like transcript levels,
we can prove (see Appendix F) that correlations between
nonidentical fluorescent proteins in the absence of periodic
driving are constrained by

√
Tm � CVx′′

CVy′′
, (5)

where X ′′ and Y ′′ denote the fluorescence levels of the two
reporter protein levels with a ratio of maturation times Tm :=
τmat,y/τmat,x. In contrast, systems that are periodically driven
can fill the entire region defined by Eq. (3). The constraint
of Eq. (5) can be used to detect oscillations in transcription
rates from measures fluorescent protein variability analogous
to the mRNA method discussed above [see Fig. 3(c)]. The cor-
responding experimental setup simply requires two different
fluorescent proteins under the same transcriptional control as
our gene of interest as illustrated in Fig. 3(d) (right panel).

IV. APPLYING THEORETICAL BOUNDS
TO EXPERIMENTAL DATA

The variables in our constraints are experimentally ac-
cessible: mRNA dual-reporter lifetime ratios, CVs, and
correlations have been reported [17,19] with measurements
in the ranges 0.14 � T � 1, 0.3 � CVx,y � 3, and 0.056 �
ρxy � 0.89, respectively. The CVs from fluorescent protein
reporters tend to be smaller, with CVs typically ranging from
0.1 to 1 [4,12,13]. Next we discuss real-world challenges
when our constraints meet experimental data and analyze
recent gene expression data quantifying population variability
of constitutively expressed fluorescent proteins in E. coli [15].

A. Unknown lifetime ratios

Our constraints depend on the ratio of reporter lifetimes or
maturation times. For many fluorescent proteins, maturation
times can be obtained from the literature [15], but mRNA

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bounds of Eq. (4) or (5) (indicated by the black dashed line). Selected
numerical simulation (dots) illustrate the achievability of the con-
strained regions and the arrowed curves indicate how specific models
(Appendix G) behave as the downstream response becomes slower.
For these systems, we find that oscillatory systems cross the black
dashed line when 2π

√
τxτy or 2π

√
τmat,xτmat,y becomes slower than

the period of the driving oscillation. To detect oscillations it is thus
advantageous to choose slow reporters. (d) Periodic transcription
rates of a gene of interest, gene Z , can be experimentally detected
either utilizing mRNA reporters X and Y (left panel) or fluorescent
protein reporters X ′′ and Y ′′ (right panel), driven by the promoter of
gene Z . If experimental reporters violate Eq. (4) or (5), they land to
the left of the black dashed line [in (c)] and gene Z must be driven
by a periodically varying transcription rate.
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lifetimes may not be precisely known or might be highly
context dependent. This problem can be overcome through
the addition of a third reporter: By measuring pairwise corre-
lations between three dual-reporter transcripts within the class
of Eq. (1), we can determine the ratio of lifetimes between any
pair of three reporters (Appendix J 1). In particular, the ratio
T := τy/τx is given by

T = ηxx − ηxw

ηyy − ηyw
, (6)

where w denotes the abundance of a third coregulated mRNA
reporter (with unknown or arbitrary lifetime) and η f g :=
Cov( f , g)/〈 f 〉〈g〉 defines normalized covariances obtained
from population snapshots.

Similarly, for fluorescent proteins within the class of
Fig. 2(a), we can determine the ratio of maturation times Tm by
measuring the correlations of X ′′ and Y ′′ with two other fluo-
rescent proteins of known maturation time (see Appendix J 1).
Utilizing additional reporters to determine unknown asymme-
tries between X and Y is a successful general strategy because
the number of constraints on a system increases faster than the
number of parameters when adding additional reporters and
observing their (co)variance. For example, next we specify
how unknown constants of proportionality in transcription or
experimental detection can be inferred from pairwise correla-
tion measurements with additional reporters.

B. Proportional transcription rates

So far we have considered coregulated genes that have
identical (though probabilistic) transcription rates. This is mo-
tivated by experimental synthetic reporter systems in which
two fluorescent proteins are expressed under two identical
copies of a known transcriptional promoter. Additionally, the
above results can be extended to coregulated genes in which
the transcription rates are not identical but proportional to
each other, i.e., Ry = αRx for some α. Similar bounds hold
for this new class of systems (see Appendix I) but they depend
on the proportionality factor α, which is potentially unknown.
For the class of systems defined in Eq. (1), this issue can be
resolved by introducing an additional reporter to determine
the constant of proportionality between the transcription rates.
If the lifetime ratio T is not known a priori, then four re-
porters would be needed in order to determine all unknowns.
Additionally, for synthetic fluorescent protein reporters, the
constant of proportionality in transcription can be inferred
from absolute numbers of molecules. If measurements only
report relative numbers, α can be inferred through additional
reporter correlations or sequential single-color experiments in
which the same fluorescent protein is expressed under the two
different promoters (see Appendix J 2).

C. Systematic undercounting

Experimental data in cell biology might not reflect abso-
lute abundances. For example, mRNA molecules are often
counted using fluorescence in situ hybridization (FISH), a
method that can lead to a systematic undercounting of the
copy number due to probabilistic binding between mRNA
molecules and the fluorescent probes. Similarly, sequencing
methods rely on probabilistic amplification steps to detect

transcripts. However, as long as each type of molecule is
experimentally detected with the same probability, the above
bounds and accessible regions are strictly unaffected by the
detection probabilities (Appendix H). This can be intuitively
understood because undercounting corresponds to a binomial
readout step which decorrelates measurements just like the al-
ready accounted for stochastic reaction steps. While reported
averages, variances, and correlations strongly depend on de-
tection probabilities, their accessible region is bounded by the
same inequalities described above.

If different reporters have a different probability of being
detected we can generalize the above constraints to account
for that and infer the missing parameter from pairwise corre-
lations between three reporters (see Appendix J 2).

D. Concentration measurements instead of absolute numbers

Growing and dividing cells exhibit a natural cycle in which,
on average, cell division “eliminates” half the molecules of
a cell while also reducing the cell volume by a factor of
2. Instead of considering absolute numbers, many experi-
ments thus report concentrations of molecules which (on
average) are unaffected by cell division. In the preceding
discussion, the specified reactions describe the birth and death
of molecules, but exactly the same constraints of Eqs. (4)
and (5) can be used to analyze concentration measures of
growing and dividing cells. When using concentrations to
determine CVs, violations of Eqs. (4) and (5) can then detect
genes whose transcription rate varies periodically during the
cell cycle (see Fig. 4). In this analysis of concentrations we
allow for binomial splitting noise, division time fluctuations,
and asymmetric divisions and we assume that cellular volume
grows exponentially between divisions (Appendix K).

When reporter concentrations are independent of cell vol-
ume, open-loop constraints for concentrations similar to the
ones derived for absolute numbers can be analytically proven
(Appendix K). For coregulated mRNA this constraint is ex-
actly identical to Eq. (2), but for fluorescent proteins the
equivalent of Eq. (3) changes because concentrations are sub-
ject to an additional degradation rate from dilution governed
by the average cell-cycle time τc. In the absence of feedback,
CVs in fluorescence concentrations that are volume indepen-
dent are constrained by

max

⎛
⎝T c

m
CVy′′
CVx′′

− CVx′′
CVy′′

1 − T c
m

, 0

⎞
⎠ � ρx′′y′′ �

T c
m

Tm

CVy′′
CVx′′

− CVx′′
CVy′′

T c
m

Tm
− 1

, (7)

where T c
m = [1/τmat,x + ln(2)/τc]/[1/τmat,y + ln(2)/τc], and

these bounds are indicated by the orange solid lines in
Fig. 4(b) (right panel).

Systems in which the reporter concentrations are not inde-
pendent of the volume are not bound by the above constraints.
However, numerical simulations suggest that CVs in concen-
trations violate inequalities (2) and (7) only marginally [see
blue dots in Fig. 4(b)]. An exact bound can be derived to
strictly constrain this class of systems if we have experimental
access to a third reporter (see Appendix K 3).
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(a)

(b)

(c)

FIG. 4. Utilizing bounds to analyze concentrations in growing and dividing cells. (a) We want to distinguish stochastically varying
transcription rates whose average remains constant throughout the cell cycle (red line) from transcription rates that change periodically
during the cell cycle (exemplified by the blue line). Numbers of molecules oscillate in both types of systems but only systems with
cell-cycle-dependent driving oscillate in concentrations. Our constraints can identify such periodic gene expression from static snapshots of
population variability without access to time-series data. (b) Orange solid lines denote open-loop constraints proven for systems in which
the reporter concentrations are independent of the cell volume, under the assumption that the cell volume grows exponentially between
division events. For mRNA reporters (left panel) concentration correlations are then bounded by the same constraints derived for absolute
numbers in the absence of feedback. When transcription rates are periodic, the open-loop constraint of Eq. (2) for absolute numbers does not
strictly apply to concentrations. Numerical simulations of example systems (blue dots) suggest that such systems only fall marginally outside
the orange bounds. For fluorescent reporters (right panel), the feedback bounds (orange lines) for concentrations depend on the additional
parameter T c

m := [1/τmat,x + ln(2)/τc]/[1/τmat,y + ln(2)/τc], where τc is the average cell-cycle time [see Eq. (7)]. However, for both mRNA
and fluorescence levels, Eqs. (4) and (5) (black dashed lines) can be used to detect cell-cycle-dependent genes from asynchronous static
snapshots of dual-reporter concentrations. (c) Previously reported gene expression variability data for constitutively expressed fluorescent
proteins that exhibit first-order maturation dynamics in E. coli [15]. Plotted are variability ratios and reporter asymmetries with respect to the
observed dynamics of mEYFP. As expected for constitutively expressed fluorescent proteins, the experimental data are consistent with the class
of gene expression models that do not exhibit feedback and are not periodically driven (pink region) bounded by Eqs. (5) and (8). With the
exception of the indicated mEGFP outlier, all data fall along the right-hand boundary that is only accessible for systems whose fluorescence
variability is dominated by a translation, maturation, or machine readout step. The yellow corridor indicates the estimated uncertainty in
reported cell-cycle time τc = (28.5 ± 2) min and the reference mEYFP maturation half-life τmat,y ln(2) = (9.0 ± 0.7) min. Variability ratios
with respect to all other reference fluorescence proteins confirm the above picture with the exception of the observed mEGFP variability which
violates the expected behavior (see Appendix L).

E. Data from constitutively expressed fluorescent proteins
fall within the expected bounds

Ultimate proof that our constraints can be used to identify
periodically expressed genes will consist of experimentally
observing CVs of cell-cycle-dependent promoters that violate
Eq. (4) or (5) in physiologically relevant regimes. However,
even in the absence of such direct verification, the applicabil-
ity of our method can be supported through a self-consistency
check, i.e., whether data for fluorescent proteins expressed
through a constitutive promoter fall into the expected region
of gene expression dynamics that is stochastically driven and
not subject to feedback control. Such data exist in E. coli
for fluorescent proteins with precisely determined maturation
dynamics [15]. Here we analyze this cell-to-cell variability
data for fluorescent reporters that exhibited clear first-order
maturation dynamics by determining the CV in protein
concentration after subtracting volume variability of growing
and dividing cells (Appendix L).

In the absence of simultaneous fluorescence measure-
ments, sequential CV measurements in concentrations are
constrained by

T c
m � CVx′′

CVy′′
�

√
T c

m

Tm
, (8)

which corresponds to the bounds of Eq. (7) when allowing
for any value of the correlation coefficient (unobserved for
sequential variability measurements). As discussed in the pre-
ceding section, the no-oscillation constraint of Eq. (5) still
applies directly even when we analyze concentrations rather
than absolute numbers.

In Fig. 4(c) we present experimentally determined vari-
ability data [15] for fluorescent proteins under control of the
constitutive promoter proC in E. coli with mEYFP variability
and maturation dynamics as a reference point. As expected
for constitutively expressed fluorescent proteins, the data for
these biologically “boring” systems are consistent with the
class of gene expression models that do not exhibit feedback
and are not periodically driven (pink region), bounded by
Eqs. (5) and (8). Error bars for T c

m in Fig. 4(c) are taken
from [15] with error propagation, and error bars in CVs and
their ratios are the standard error of the mean from three
independent cell cultures with error propagation respectively.

Furthermore, all data (with the exception of mEGFP) fol-
low the right boundary of the allowed region. The observed
variability of mEGFP is confirmed as an outlier when using
the mEGFP measurements as a reference point for which the
observed CV ratios violate our predicted bounds (see Ap-
pendix L). One possible explanation of this outlier would be
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that mEGFP cells grew more slowly than the experimentally
reported 28.5-min cell-division times for all strains.

Data that fall on the right-hand boundary are consistent
with negligible biological noise upstream of translation or
with variability that is dominated by technical measurement
noise whose normalized variance decreases with the inverse
of the mean population signal (see Appendix L).

F. Measurement noise and technological limitations

Theoretical constraints can be experimentally exploited
as long as measurement uncertainties are sufficiently small.
When considering the sampling error of cell-to-cell variabil-
ity, 95% confidence intervals for CVs have been reported
to be around 5%–10% of the respective CV value [12,19].
Similarly, experiments have shown high biological repro-
ducibility, e.g., three repeats of identical flow-cytometry
experiments exhibited a standard error of the CVs of around
10% [15]. However, a significant limitation remains for
current experimental high-throughput methods like flow-
cytometry or single-cell sequencing: The measurements
techniques themselves introduce significant noise, especially
when used with bacteria [25,26], which means that technical
variability can introduce a systematic error in estimates of
biological variability. In such cases, one can attempt to de-
convolve true biological variability from measurement noise
using experimental and analytical techniques, e.g., by using
calibration beads [25] or by using noise models [26]. Alterna-
tively, one can opt for methods of lower throughput but greater
precision, for example, mRNA measurements by smFISH are
well suited for validation of our method given its accuracy and
high sensitivity [27]. Rapid improvements in high-throughput
quantification tools such as sequential FISH will provide ex-
citing opportunities for future applications of our work [28].

V. DISCUSSION

While our results are motivated by the analysis of gene
expression dynamics, utilizing correlation constraints to char-
acterize the dynamics within complex processes may prove
useful in other areas of science in which systems involve
many interacting components whose dynamics is difficult or
impossible to track completely. Our results show that it is
possible to rigorously analyze correlations within classes of
incompletely specified physical models without resorting to
statistical inference methods. Crucially, our approach does
not require time-resolved data, which is often unavailable
for complex systems. For example, following individual cells
over time is much more challenging, and thus less common,
than taking static population snapshots of cellular abundances.

Our correlation constraints provide a framework to detect
the presence of feedback strictly from observations of a small
subset of components within a much larger cellular process.
This could, e.g., be utilized to pinpoint molecular components
that are involved in feedback regulation of a gene by observing
how our proposed signature of feedback is affected in knock-
out experiments. Additionally, our results highlight that using
unequal reporters can reveal dynamic properties of regulation
even in the absence of temporal data. These constraints are
fundamentally due to the dynamics of interactions and are not
apparent in previous work that considered asymmetric dual re-

porters as static random variables [29]. For example, we show
that, theoretically, cell-cycle-dependent transcription rates can
be detected from static population measurements of asym-
metric downstream products of gene expression. Additionally,
we explicitly show that our mathematical framework can be
utilized even when experimental techniques detect individual
molecules only probabilistically or when key parameters are
unknown. Finally, we report an experimental “negative con-
trol” in which we confirm that the measured variability of
constitutively expressed fluorescence proteins falls into the
expected region of gene expression variability for genes that
are not subject to feedback regulation or periodic driving.

ACKNOWLEDGMENTS

We thank Raymond Fan, Brayden Kell, Seshu Iyengar, Ti-
mon Wittenstein, Sid Goyal, Ran Kafri, and Josh Milstein for
many helpful discussions. We thank Laurent Potvin-Trottier
and Nathan Lord for valuable feedback on the manuscript.
This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada and a New Researcher
Award from the University of Toronto Connaught Fund. A.H.
gratefully acknowledges funding through Grant No. NSF-
1517372 while in Johan Paulsson’s group at Harvard Medical
School.

APPENDIX

Here we detail the mathematical derivations and illus-
trate some of the results in greater depth. Throughout the
Appendix we define the normalized (co)variance as η f g :=
Cov( f , g)/〈 f 〉〈g〉, where the statistical measures are station-
ary population averages.

First we go over the mathematical framework in which we
model reaction networks in cells. The state of an intracellular
biochemical network at a given moment in time is given by
the integer numbers {xi} of the chemical species {Xi}, which
we can write as x = (x1, . . . , xn). This system is dynamic,
and so this state x will undergo discreet changes over time as
reactions occur. If there are m possible reactions in the system,
we can write them as

x
rk (x)−−→ x + dk, k = 1, . . . , m,

where the rate rk (x) corresponds to the probability per unit
time of the kth reaction occurring and the step size dk =
(d1k, . . . , dnk ) corresponds to the change in the chemical
species numbers x from the kth reaction (the dik are positive or
negative integers). It then follows that the system probability
distribution P(x, t ) evolves according to the chemical master
equation [30,31]

d

dt
P(x, t ) =

∑
k

[rk (x − dk )P(x − dk, t ) − rk (x)P(x, t )].

Time evolution equations for the moments 〈xk
i 〉 of each com-

ponent Xi follow directly from the chemical master equation
[31].
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APPENDIX A: FLUCTUATION-BALANCE RELATIONS
FOR SYSTEMS AS DEFINED IN EQ. (1)

Previous work established general relations that constrain
fluctuations of components within incompletely specified re-
action networks [18]. In particular, any two components Z1

and Z2 in an arbitrarily complex network that reach wide-
sense stationarity must satisfy the flux-balance relations

〈R+
1 〉 = 〈R−

2 〉 (A1)

as well as the fluctuation-balance relations

Cov(z1, R−
2 −R+

2 ) + Cov(z2, R−
1 −R+

1 )=
∑

k

d1kd2k〈rk〉,

(A2)

where R+
i and R−

i are the net birth and death fluxes of compo-
nent Zi, respectively, and the summation is over all reactions
in the network, with rk the rate of the kth reaction and dik the
step size of Zi of the kth reaction. For the class of systems in
Eq. (1), Eqs. (A1) and (A2) imply

〈R〉 = 〈x〉/τx, 〈R〉 = 〈y〉/τy (A3)

and

ηxx = 1

〈x〉 + ηxR, ηyy = 1

〈y〉 + ηyR,

ηxy = 1

1 + T
ηxR + T

1 + T
ηyR. (A4)

These relations must be satisfied by all systems in the class,
regardless of the unspecified details. This allows us to set
general constraints that hold for the entire class of systems.
For example, the above relations lead to

ηxy = 1

1 + T

(
ηxx − 1

〈x〉
)

+ T

1 + T

(
ηyy − 1

〈y〉
)

� 1

1 + T
ηxx + T

1 + T
ηyy,

where in the second step we used fact that the averages are
positive. Dividing this bound by

√
ηxxηyy leads to ρxy(1 +

T ) � CVx
CVy

+ T CVy

CVx
, which is the bound indicated by the orange

dashed line in Fig. 1(b). The inequality becomes an equality
when 1

〈x〉 ,
1

〈y〉 → 0, which corresponds to systems where X and
Y exhibit no intrinsic stochasticity and follow the upstream
signal deterministically.

APPENDIX B: CONSTRAINTS ON OPEN-LOOP SYSTEMS
FOR SYSTEMS AS DEFINED IN EQ. (1)

1. Derivation of the open-loop constraint (2)

We consider a hypothetical ensemble of systems from the
class of Eq. (1) that all share the same upstream history
u[−∞, t]. We can then consider the average stochastic dual
reporters conditioned on the history of their upstream influ-
ences [32,33], which corresponds to the averages at a moment
in time in this hypothetical ensemble

x̄(t ) = E [Xt |u[−∞, t]], ȳ(t ) = E [Yt |u[−∞, t]].

These are time-dependent variables that depend on the up-
stream history u[−∞, t]. We can take averages 〈x̄〉 and
(co)variances ηx̄x̄ over the distribution of all possible histories.

This conditional system is not stationary because of the
synchronized rate R(t ) = R(u(t )), and so the time evolution
of the averages will follow the differential equations [32]

d�x̄

dt
= �R(t ) − �x̄(t )

τx
,

d�ȳ

dt
= �R(t ) − �ȳ(t )

τy
, (B1)

where �x̄ = x̄ − 〈x〉, �ȳ = ȳ − 〈y〉, and �R(t ) = R(t ) − 〈R〉.
These differential equations correspond to a linear response
problem in which X and Y both respond to R(t ) on different
timescales. To relate the results to the actual ensemble, we
multiply the left differential equation by x̄ and take the expec-
tation over all histories u[−∞, t] to get

E

[
1

2

d�x̄2

dt

]
= E [�x̄R(t )] − E [�x̄2]

τx
.

Note that E [ d�x̄2

dt ] = d
dt E [�x̄2] = d

dt Var(x̄), which equals
zero at wide-sense stationarity. We thus have

Cov(x̄,�R(t )) = Var(x̄)

τx
.

Moreover, we have

Cov(x̄, R(t )) = E [x̄R(t )] − E [x̄] · E [R(t )]

= E [E [Xt |u[−∞, t]] · R(t )] − 〈x〉〈R〉
= E [E [Xt R(u(t ))|u[−∞, t]]] − 〈x〉〈R〉
= 〈xR〉 − 〈x〉〈R〉 = Cov(X, R).

Putting these results together and normalizing, we find

ηx̄x̄ = ηxR, ηȳȳ = ηyR, (B2)

where the flux-balance relations (A3) were used and the
expression on the right follows by symmetry. Similarly, it
has been shown [32] that ηx̄ȳ = ηxy. Comparing with the
fluctuation-balance relations (A4), we find

ηxx = 1

〈x〉 + ηx̄x̄, ηyy = 1

〈y〉 + ηȳȳ,

ηx̄ȳ = ηxy = 1

1 + T
ηx̄x̄ + T

1 + T
ηȳȳ. (B3)

These relations allow us to translate results derived from the
deterministic dynamics to the stochastic dynamics. We now
use the Cauchy-Schwarz inequality as(

1

1 + T
ηx̄x̄ + T

1 + T
ηȳȳ

)2

= η2
x̄ȳ � ηx̄x̄ηȳȳ.

This inequality leads to a quadratic that can be solved to obtain
the inequality

T 2ηȳȳ � ηx̄x̄ � ηȳȳ. (B4)

We need to write this inequality in terms of the measurable
(co)variances ηxx, ηyy, and ηxy. To do this, note that the flux-
balance equations (A3) and the fluctuation-balance equations
(A4) comprise a linear system of five equations and five un-
knowns. We can thus solve for ηxR and ηyR in terms of the
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measurable (co)variances

ηxR = (1 + T )ηxy − T ηyy + ηxx

2
,

ηyR = (1 + T )ηxy + T ηyy − ηxx

2T
. (B5)

From Eq. (B2) we find that ηx̄x̄ = ηxR and ηȳȳ = ηyR, so we
substitute Eq. (B5) into Eq. (B4), which leads to the open-loop
constraint of Eq. (2).

2. Discriminating types of feedback

The open-loop constraint of Eq. (2) constrains all systems
from the class of Eq. (1) in which X and Y are not con-
nected in some kind of feedback loop. Here we derive similar
constraints on systems where only one of the components
undergoes open-loop regulation while the other can still be
connected in a feedback loop. We will also show how coregu-
lated reporters can be used to infer whether or not the feedback
is negative, and if so, how to measure the noise suppression
from this negative feedback using only (co)variance measure-
ments.

First, we consider systems in which there is no feedback
in one of the components, say, X . We can then condition
on the history of the upstream variables u(t ) and the his-
tory of Y ; together they make a larger cloud of components
that can affect X but are not affected by X . Just like the
preceding section, we then consider the conditional average
x̄ = E [Xt |u[−∞, t], y[−∞, t]], from which we have

E [x̄(t )y(t )] − E [x̄]E [y(t )]

= E [E [Xt y(t )|u[−∞, t], y[−∞, t]]] − 〈x〉〈y〉
= E [E [XtYt |u[−∞, t], y[−∞, t]]] − 〈x〉〈y〉
= 〈xy〉 − 〈x〉〈y〉 ⇒ ηx̄y = ηxy.

We can then use the Cauchy-Schwarz inequality in the follow-
ing way: η2

xy = η2
x̄y � ηx̄x̄ηyy. This inequality bounds systems

in which there is no feedback in X . We would now like to
write it in terms of measurable (co)variances. To do this, we
note that the relation ηx̄x̄ = ηxR from Eq. (B2) still holds here
as we made no assumptions about Y in that derivation. We
can thus use Eq. (B5) to write ηx̄x̄ in terms of the measurable
(co)variances and substitute the results in the above inequality.
This leads to the constraint

ρ2
xy �

1

2

[
(1 + T )ρxy

CVy

CVx
− T

(
CVy

CVx

)2

+ 1

]
. (B6)

Systems that break this constraint must have some kind of
feedback in X . Similarly, we can derive the analogous con-
straint on systems with no feedback in Y :

ρ2
xy �

1

2T

[
(1 + T )ρxy

CVx

CVy
+ T −

(
CVx

CVy

)2]
. (B7)

Systems that break this constraint must have some kind of
feedback in Y . These bounds are plotted in Fig. 5(a).

Next we show how to detect negative feedback. Here we
define feedback to be negative when ηxR < 0. That is, the
birthrate R acts to suppress noise in X below Poisson noise.
From Eq. (B5), ηxR and ηyR can be solved for in terms of

FIG. 5. The space of possible covariability between mRNA lev-
els of coregulated genes depends on the type of feedback. (a) Systems
that have no feedback in X must lie in the region bounded by the light
red solid lines which corresponds to the region bounded by Eq. (B6).
Systems that lie outside of this region must have feedback in X .
Similarly, systems that have no feedback in Y must lie in the region
bounded by the light blue solid lines which corresponds to the region
bounded by Eq. (B7). (b) Here we define feedback to be negative
when the mRNA transcription rate is negatively correlated with the
mRNA levels: ηxR < 0. This would correspond to highly regulated
systems that exhibit noise suppression. Using coregulated reporters,
ηxR and ηyR can be measured from static (co)variance measurements
of X and Y using Eq. (B5).

the measurable (co)variances. (Co)variance measurements be-
tween coregulated mRNA can thus be used to measure ηxR and
ηyR using Eq. (B5) [see Fig. 5(b)]. Moreover, we can quan-
tify how strong this negative feedback is through the noise
suppression: ηxx/(1/〈x〉) = ηxx/(ηxx − ηxR). As the negative
feedback gets stronger, the noise suppression will get smaller
and quantifies the strength of the negative feedback.

APPENDIX C: DYNAMICS FROM STATIC
TRANSCRIPT VARIABILITY

The stationary solution for the variance of x̄(t ) follows
from the linear response problem (B1) with

ηx̄x̄ = 1

τx
ηRR

∫ ∞

0
A(s)e−s/τx ds, (C1)

where A(s) is the autocorrelation of the time-varying tran-
scription rate R(t ) (see below for a detailed derivation). For
a given input R(t ), ηx̄x̄ depends on τx, and so measuring
τxηx̄x̄ as a function of τx effectively determines the Laplace
transform of the autocorrelation of R(t ) from static variance
measurements of downstream reporters. Our results exploit
the fact that knowing static downstream variability for just two
values of τx constrains the possible dynamics of R(t ).

In particular, with τy < τx we have

ηx̄x̄ − T ηȳȳ = ηRR

τx

∫ ∞

0
A(s)(e−s/τx − e−s/τy )ds. (C2)
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FIG. 6. The space of possible correlations between coregulated
reporters depends on the timescale of the upstream fluctuations.
(a) The timescale of stochastic fluctuations is characterized by how
quickly the autocorrelation of the signal (red) decays to zero. By
bounding the autocorrelation from below by e−t/τR (black dashed
curve) we set a lower bound on how quickly the signal autocor-
relation can decay to zero. This thus sets a lower bound on the
speed of the signal fluctuations. (b) Open-loop systems in which the
upstream autocorrelation is bounded below by e−t/τR are bounded
further towards the right. The dark red solid lines correspond to the
loose bound given by Eq. (C4), whereas the black dashed lines are
given by the stricter numerical bound presented in the Supplemental
Material [34]. These constraints can be used to gain information on
the timescale of upstream fluctuations with only access to static snap-
shots of dual-reporter transcript concentrations obtained, e.g., from
single-cell sequencing methods that report snapshots of transcript
abundances rather than temporal information.

For stochastic upstream signals with A(s) � 0 the integrand
of Eq. (C2) is non-negative such that

T ηȳȳ � ηx̄x̄. (C3)

Equation (C3) gives the bound of Eq. (4) after substituting
ηx̄x̄ = ηxx − 1/〈x〉 and ηȳȳ = ηyy − 1/〈y〉 together with the
flux balance given by Eq. (A3).

We can further bound the class of stochastic systems based
on the timescale of the upstream fluctuations. If upstream
fluctuations are slower than τR such that A(s) � e−s/τR , we
have

ηx̄x̄ − T ηȳȳ �
ηRR

τx

∫ ∞

0
e−t/τR (e−t/τx − e−t/τy )dt

= ηRRτR

(
1

τR + τx
− T

τR + τy

)

� ηȳȳτR

(
1

τR + τx
− T

τR + τy

)
,

and analogously to the above derivation of Eq. (4) it follows
that

β(1 − T )ρxy �
CVx

CVy
− T

CVy

CVx
, (C4)

where β = (1 + T )/[2T (1 + τx
τR

)(1 + T τx
τR

) + (1 − T )]. In
the limit where τR → 0 we have β → 0, and as a result
Eq. (C4) converges to Eq. (4). Conversely, for slow stochas-
tic upstream fluctuations as τR → ∞ we have β → 1, and
Eq. (C4) converges to the right boundary of the open-loop
constraint (see Fig. 6). The analytical bound of Eq. (C4) is

marginally loose. A tight bound can be derived numerically
as presented in the Supplemental Material [34].

Derivation of Eq. (C1). Taking the Fourier transforms of
Eq. (B1) and using the Wiener-Khinchin theorem [35], which
states that the spectral density of a random signal is equal to
the Fourier transform of its autocorrelation, we find

F[Rx̄] = F[RR]

1 + ω2
, F[Rȳ] = F[RR]/T 2

1/T 2 + ω2
,

where RR is the autocovariance of R. Since RR(t = 0) =
Var(R), the variances can be found by taking the inverse
Fourier transforms at t = 0,

Var(x̄) = 1

2π

∫ ∞

−∞

F[RR]

1 + ω2
dω,

Var(ȳ) = 1

2π

∫ ∞

−∞

F[RR]

1/T 2 + ω2
dω. (C5)

We thus have

Var(ȳ) = · · ·

= 1

2π

∫ ∞

−∞
F[RR](ω)

(
T 2

1 + (ωT )2

)
dω

= 1

2π

∫ ∞

−∞

[∫ ∞

−∞
RR(t )e−iωt dt

](
T 2

1 + (ωT )2

)
dω

= 1

2π

∫ ∞

−∞

[∫ ∞

−∞
RR(t )cos(ωt )dt

](
T 2

1 + (ωT )2

)
dω

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
RR(t )cos(ωt )

(
T 2

1 + (ωT )2

)
dt dω

= 1

2π

∫ ∞

−∞
RR(t )

[∫ ∞

−∞
cos(ωt )

(
T 2

1 + (ωT )2

)
dω

]
dt

= 1

2

∫ ∞

−∞
RR(t )Te−|t |/T dt

=
∫ ∞

0
RR(t )Te−t/T dt,

where in the third step we use the fact that RR(t ) is real
and symmetric and in the last step we use the fact that the
integrand is symmetric in t . Normalizing by the averages, we
have Eq. (C1). Note that this expression can also be derived
by writing down the general solution of �ȳ(t ) from the dif-
ferential equation (B1), squaring the solution to get �ȳ(t )2,
and taking the ensemble average over all histories, where
ergodicity is not assumed.

1. Setting bounds on the spectral density of upstream
influences using coregulated reporters

Numerical simulations of sinusoidal driving indicate that
slow oscillations lie along the right-hand side of the open-loop
region in Fig. 1(b) and move towards the left as the frequency
of oscillation increases. Here we derive approximate condi-
tions for how large an oscillation frequency needs to be to
break the constraint given by Eq. (4). In particular, systems in
which the spectral density of the upstream signal |F[R]|2(ω)
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is zero for all ω � ωu are bounded by the inequality(
T

CVy

CVx
− CVx

CVy

)
1 + T

γ + T
� (T − γ )ρxy, (C6)

where

γ =
(

1 + ω2
uτ

2
y

1 + ω2
uτ

2
x

)
.

Systems that break the above inequality cannot satisfy the
requirement that |F[R]|2(ω) = 0 for all ω � ωu. Similarly,
systems in which the spectral density of the upstream signal
|F[R]|2(ω) is zero for all ω � ωu are bounded by the inequal-
ity

(T − γ )ρxy �
(

T
CVy

CVx
− CVx

CVy

)
1 + T

γ + T
, (C7)

where

γ =
(

1 + ω2
uτ

2
y

1 + ω2
uτ

2
x

)
.

Systems that break the above inequality cannot satisfy the
requirement that |F[R]|2(ω) = 0 for all ω � ωu.

Equations (C6) and (C7) bound fast oscillations towards
the left and slow oscillations towards the right of the open-
loop region in Fig. 1(b). As an oscillatory signal will have
a peak in its spectral density centered at the angular fre-
quency of the oscillation, Eqs. (C6) and (C7) provide us with
an estimation for how fast an upstream oscillation needs to
be relative to the reporter lifetimes in order for the system
to cross the no-oscillation line and be fully discriminated
from stochastic signals. In particular, setting γ = T turns
(C7) into the no-oscillation constraint given by Eq. (4) and
turns Eq. (C6) into the opposite constraint, which constrains
systems to be in the region only accessible by oscillations.
This γ = T is achieved when ωu = 1/

√
τxτy. We thus have

the approximate requirement for how fast the upstream signal
needs to oscillate relative to the reporter lifetimes in order to
break the no-oscillation bound

1√
τxτy

� ωR = 2π fR, (C8)

where fR is the frequency of the upstream oscillation.
We will now derive the bounds that were just presented.

We normalize Eq. (C5) by the averages

ηx̄x̄ = 1

2π〈x〉2

∫ ∞

−∞

|F[R]|2
1 + ω2

dω,

(C9)

ηȳȳ = 1

2π〈x〉2

∫ ∞

−∞

|F[R]|2
1 + ω2T 2

dω,

where without loss of generality we work in units where τx =
1 and τy = T and where we use the fact that 〈y〉 = T 〈x〉. We

thus have

ηx̄x̄ −
(

1 + ω2
uT 2

1 + ω2
u

)
ηȳȳ = 1

2π〈x〉2

∫ ∞

−∞
|F[R]|2

[
1

1 + ω2

−
(

1 + ω2
uT 2

1 + ω2
u

)
1

1 + ω2T 2

]
dω.

The expression in small square brackets is negative for ω >

ωu and positive otherwise. Thus, if the spectral density of R is
zero for ω � ωu, we have

ηx̄x̄ −
(

1 + ω2
uT 2

1 + ω2
u

)
ηȳȳ � 0.

Using Eqs. (B2) and (B5) to write ηx̄x̄ and ηȳȳ in terms of
measurable (co)variances, this inequality becomes Eq. (C6).
Similarly, the same arguments show that systems in which
the spectral density of R is zero for all ω � ωu must satisfy
Eq. (C7).

APPENDIX D: GENERAL CLASS OF COREGULATED
FLUORESCENT PROTEINS

For the class of fluorescent proteins defined in Fig. 2(a),
we can derive similar results. First, however, we will define
a more general class of systems of which Fig. 2(a) is a sub-
set. This class consists of the class of systems in Fig. 2(a)
when we do not make any assumptions about the mRNA
intrinsic system (see Fig. 7). Here ux and uy are systems of
variables that model the mRNA dynamics after transcription
or any post-translational modifications that occur before the
maturation step. Together with u(t ) these form a larger cloud
of components that affect the proteins X ′ and Y ′. We require
that ux and uy are identical, though independent [in the sense
that they are not equal, as the shared influence of u(t ) will
make them statistically dependent]. Aside from this, they are
left almost completely unspecified. We will make one ad-
ditional requirement on these nonspecified intrinsic systems
when we prove the open-loop constraint given by Eq. (3).
In particular, we require that the fluctuations that originate
from these intrinsic systems be nonoscillatory, so that any
oscillatory variability is caused by variability in the shared
upstream environment u(t ). Specifically, the birthrates of X ′
and Y ′ will not be entirely equal due to random fluctua-
tions that originate from the intrinsic systems. This intrinsic
noise can be quantified as the difference between the two
translation rates: F (u(t ), ux ) − F (u(t ), uy ). This difference
is a stochastic signal, and here we require that the auto-
correlation of this signal be non-negative. This assumption
holds for the class in Fig. 2(a) and in systems where the
intrinsic systems consist of an otherwise unspecified cas-
cade of arbitrary steps. The assumption excludes systems in
which ux and uy form circuits of components that create
oscillations.

Similarly to Appendix A, at wide-sense stationarity the
following flux-balance relations must hold [18]:

〈x′′〉/τ ′′ = 〈x′〉/τmat,x = 〈Fx〉,
〈y′′〉/τ ′′ = 〈y′〉/τmat,y = 〈Fy〉. (D1)
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FIG. 7. General class of dual-reporter systems with coregulated fluorescent proteins. We consider a class of systems identical to
Fig. 2(a) with the exception that we now include multiple unspecified steps in the intrinsic dynamics of gene expression. Here ux and uy

are identical (though independent) systems of components that are affected by the upstream cloud of components u(t ) in the same way. These
two smaller clouds of components model the intrinsic steps in gene expression and allow for a wide range of possible mRNA dynamics and
post-translational modifications that occur before the maturation step. They are left unspecified except for the fact that we assume they do not
form circuits of components that can create oscillations, so that any oscillatory variability is caused by the shared environment u(t ). We model
the dynamics of immature fluorescent proteins denoted by X ′ and Y ′, as well as mature fluorescent proteins X ′′ and Y ′′. The birthrate of X ′

and Y ′ can now depend on the components in ux and uy, respectively, in an arbitrary way. The asymmetry between the coregulated genes is
characterized by the ratio of average fluorescent maturation times Tm := τmat,y/τmat,x .

Here Fx := F (u(t ), ux ) and Fy := F (u(t ), uy ). In addition, the following fluctuation-balance relations must hold:

ηx′x′ = 1

〈x′〉 + ηx′Fx , ηy′y′ = 1

〈y′〉 + ηy′Fy , ηx′y′ = 1

1 + Tm
ηx′Fy + Tm

1 + Tm
ηy′Fx ,

ηx′′x′′ = 1

〈x′′〉 + ηx′x′′ , ηy′′y′′ = 1

〈y′′〉 + ηy′y′′ , ηx′′y′′ = 1

2
ηy′x′′ + 1

2
ηx′y′′ ,

ηx′x′′ = 1

1 + τ ′′
τmat,x

ηx′Fx +
τ ′′

τmat,x

1 + τ ′′
τmat,x

ηx′′Fx , ηy′y′′ = 1

1 + τ ′′
τmat,y

ηy′Fy +
τ ′′

τmat,y

1 + τ ′′
τmat,y

ηy′′Fy ,

ηy′x′′ = 1

1 + τ ′′
τmat,y

ηx′y′ +
τ ′′

τmat,y

1 + τ ′′
τmat,y

ηx′′Fy , ηx′y′′ = 1

1 + τ ′′
τmat,x

ηx′y′ +
τ ′′

τmat,x

1 + τ ′′
τmat,x

ηy′′Fx . (D2)

APPENDIX E: CONSTRAINTS ON OPEN-LOOP SYSTEMS
FOR SYSTEMS AS DEFINED IN FIG. 2(a)

Here we prove the inequality (3). The inequality (3) has
three parts, which are represented by the three orange solid
lines in Fig. 2(b). We will first prove these three constraints
one at a time, followed by the upper bound on correlations
illustrated by the orange dashed line in Fig. 2(b). Refer back
to Fig. 7 for illustration of the system being studied.

Proof of the bottom bound ρx′′y′′ � 0. Just like in the previ-
ous sections, we consider the average stochastic dual-reporter
dynamics conditioned on the history of their upstream influ-
ences

x̄′′(t ) = E [X ′′
t |u[−∞, t]], ȳ′′(t ) = E [Y ′′

t |u[−∞, t]].

When the cloud of components u(t ) is not affected by the
downstream components we can write the time evolution of
the conditional averages using the chemical master equation
of the conditional probability space

d�x̄′

dt
= �F̄ (t ) − �x̄′,

d�ȳ′

dt
= �F̄ (t ) − �ȳ′

Tm
,

d�x̄′′

dt
= �x̄′ − �x̄′′

τ ′′ ,
d�ȳ′′

dt
= �ȳ′

Tm
− �ȳ′′

τ ′′ ,

where without loss of generality we work in units where
τmat,x = 1 and τmat,y = Tm and where

F̄ (t ) = E [F (u(t ), ux )|u[−∞, t]]

= E [F (u(t ), uy )|u[−∞, t]]

is the translation rate after averaging out the mRNA fluctua-
tions. Note that the equality on the right-hand side is from the
fact that the unspecified intrinsic systems ux and uy are identi-
cal and thus the conditional averages are the same. Taking the
Fourier transform of the above differential equations and then
using the Wiener-Khinchin theorem [35] which states that the
spectral density of a random signal is equal to the Fourier
transform of its autocorrelation, we find

F[Rx̄] = F[RF̄ ]

(1/τ ′′2 + ω2)(1 + ω2)
,

F[Rȳ] = F[RF̄ ]

(1/τ ′′2 + ω2)
(
1 + ω2T 2

m

) ,

where RF̄ is the autocovariance of F̄ (t ). Since Rz(t = 0) =
Var(z), the variances can be found by taking the inverse
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Fourier transforms at t = 0,

Var(x̄′′) = 1

2π

∫ ∞

−∞

F[RF̄ ]

(1/τ ′′2 + ω2)(1 + ω2)
dω,

Var(ȳ′′) = 1

2π

∫ ∞

−∞

F[RF̄ ]

(1/τ ′′2 + ω2)
(
1 + ω2T 2

m

)dω. (E1)

Moreover, we then use the Wiener-Khinchin theorem [35]
which states that the Fourier transform of the cross power
spectral density of two signals is equal to the Fourier trans-

form of their cross correlation to write

F[Rx̄′′,ȳ′′ ] = F[RF̄ ][1/Tm + ω2 + iω(1 − 1/Tm)]/Tm

(1/τ ′′2 + ω2)(1 + ω2)
(
1/T 2

m + ω2
) ,

where Rx̄′′,ȳ′′ is the cross covariance of x̄′′(t ) and ȳ′′(t ). Taking
the inverse Fourier transform at t = 0 gives us the covariance

Cov(x̄′′, ȳ′′)

= 1

2π

∫ ∞

−∞
F[RF̄ ]

(1/Tm + ω2)/Tm

(1/τ ′2 + ω2)(1 + ω2)
(
1/T 2

m + ω2
)dω,

where the term proportional to iω integrated to zero because it was odd in ω whereas the rest of the integrand is even in ω through
F[RF̄ ] = |F[�F̄ ]|2. We thus have

(1 + Tm)Cov(x̄′′, ȳ′′) = 1

2π

∫ ∞

−∞
F[RF̄ ]

(1 + Tm)(1/Tm + ω2)/Tm

(1/τ ′2 + ω2)(1 + ω2)
(
1/T 2

m + ω2
)dω

= 1

2π

∫ ∞

−∞
F[RF̄ ]

1

(1 + ω2)(1/τ ′2 + ω2)
dω + Tm

2π

∫ ∞

−∞
F[RF̄ ]

1

(1 + ω2T 2
m )(1/τ ′2 + ω2)

dω

= Var(x̄′′) + TmVar(ȳ′′).

Upon normalizing with the averages we have

ηx̄′′ ȳ′′ = 1

1 + Tm
ηx̄′′ x̄′′ + Tm

1 + Tm
ηȳ′′ ȳ′′ .

Moreover,

Cov(x̄′′, ȳ′′) = E [E [X ′′
t |u[−∞, t]] · E [Y ′′

t |u[−∞, t]]] − E [E [X ′′
t |u[−∞, t]]] · E [E [Y ′′

t |u[−∞, t]]]

= E [E [X ′′
t Y ′′

t |u[−∞, t]]] − 〈x′′〉〈y′′〉 = 〈x′′y′′〉 − 〈x′′〉〈y′′〉 = Cov(x′′, y′′),

where the third step comes from the fact that X ′′ and Y ′′ are independent when we condition on the upstream history u[−∞, t]
[33]. Upon normalizing by the averages we have ηx̄′′ ȳ′′ = ηx′′y′′ , and so

ηx′′y′′ = 1

1 + Tm
ηx̄′′ x̄′′ + Tm

1 + Tm
ηȳ′′ ȳ′′ � 0. (E2)

We thus have the lower bound ρx′′y′′ � 0.
Proof of the right bound CVx′′/CVy′′ � 1. Here we will need to consider the average stochastic dual-reporter dynamics

conditioned on the history of all their upstream influences

¯̄x′′(t ) := E [X ′′
t |u[−∞, t], ux[−∞, t]], ¯̄y′′(t ) := E [Y ′′

t |u[−∞, t], uy[−∞, t]],

where now we also condition on the trajectory of the mRNA dynamics. When the cloud of components u(t ) does not depend
on the downstream components we can write down the time evolution of the conditional averages using the chemical master
equation of the conditional probability space. The time evolution of the conditional averages ¯̄y′ and ¯̄y′′ is given by

d ¯̄y′

dt
= Fy(t ) − ¯̄y′

Tm
,

d ¯̄y′′

dt
= ¯̄y′

Tm
− ¯̄y′′

τ ′′ ,

where now Fy(t ) corresponds to a particular translation rate trajectory as we no longer average out the mRNA dynamics, and
without loss of generality we let τmat,x = 1 and τmat,y = Tm. In terms of the deviations from the means these differential equations
become

d� ¯̄y′

dt
= �Fy(t ) − � ¯̄y′

Tm
,

d� ¯̄y′′

dt
= � ¯̄y′

Tm
− � ¯̄y′′

τ ′′ . (E3)

Multiplying the left and right equations with � ¯̄y′′ and � ¯̄y′, respectively, summing the results, and taking ensemble averages of
the different upstream histories gives us

E

[
d

dt
(� ¯̄y′ ¯̄y′′)

]
= E [� ¯̄y′′�Fy] + E [� ¯̄y′2]

Tm
−

(
1

Tm
+ 1

τ ′′

)
E [� ¯̄y′� ¯̄y′′].

At stationarity the left-hand side is zero, so we have(
1

Tm
+ 1

τ ′′

)
E [� ¯̄y′� ¯̄y′′] = E [� ¯̄y′′�Fy] + E[( ¯̄y′)]

Tm
.
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Similarly, multiplying the first of Eqs. (E3) by � ¯̄y′, taking the ensemble average, and using the fact that the left-hand side will
be zero at stationarity, we have

E [� ¯̄y′� ¯̄y′] = TmE [� ¯̄y′�Fy].

Now multiplying the second of Eqs. (E3) by � ¯̄y′′ and following the same steps we have

E [ ¯̄y′′ ¯̄y′′]/τ ′′ = TmE [ ¯̄y′ ¯̄y′′].

Combining these expressions gives us (
1

Tm
+ 1

τ ′′

)
Var( ¯̄y′′) = Cov( ¯̄y′′, Fy) + Cov( ¯̄y′, Fy ).

Now note that

Cov( ¯̄y′′, Fy) = E [ ¯̄y′′ · Fy(t )] − E [ ¯̄y′′] · E [Fy]

= E [E [Y ′′
t |u[−∞, t], uy[−∞, t]] · Fy(t )] − E [E [Yt |u[−∞, t], uy[−∞, t]]]

· E [E [F (u(t ), uy(t ))|u[−∞, t], uy[−∞, t]]]

= E [E [Y ′′
t · Fy(u(t ), uy(t ))|u[−∞, t], uy[−∞, t]]] − 〈y′′〉〈Fy〉 = Cov(y′′, Fy)

and similarly Cov( ¯̄y′, Fy) = Cov(y′, Fy). Thus, after normalizing with the averages, we have

η ¯̄y′ ¯̄y′ = 1

1 + τ ′′
Tm

ηy′Fy +
τ ′′
Tm

1 + τ ′′
Tm

ηy′′Fy .

This is the expression for ηy′y′′ in the fluctuation-balance equations (D2) and so

η ¯̄x′′ ¯̄x′′ = ηx′′x′′ − 1

〈x′′〉 , η ¯̄y′′ ¯̄y′′ = ηy′′y′′ − 1

〈y′′〉 , (E4)

where the x′′ expression follows by symmetry. Moreover, we apply the same analysis that was done in the previous proof to write

Var( ¯̄x′′) = 1

2π

∫ ∞

−∞

F[RFx ]

(1/τ ′′2 + ω2)(1 + ω2)
dω, Var( ¯̄y′′) = 1

2π

∫ ∞

−∞

F[RFy ]

(1/τ ′′2 + ω2)
(
1 + ω2T 2

m

)dω, (E5)

where RFx and RFy are the autocovariances of the translation rates F (u(t ), ux ) and F (u(t ), uy ). Note that since the two intrinsic
systems ux and uy are statistically identical, we have RFx = RFy , and so the Var( ¯̄y′′) expression has a larger integrand for
all ω (recall that F[RFy ] = F[�Fy]2 and so is positive). We thus have Var( ¯̄x′′) < Var( ¯̄y′′), which after normalizing gives us
η ¯̄x′′ ¯̄x′′ � η ¯̄y′′ ¯̄y′′ . From Eq. (D1) we have 〈x′′〉 = 〈y′′〉, and so by using Eq. (E4) we find the right bound CVx′′x′′ � CVy′′y′′ .

Proof of the left bound. Recall from the previous two proofs we derived the equations

ηx′′x′′ = 1

〈x′′〉 + η ¯̄x′′ ¯̄x′′ , ηy′′y′′ = 1

〈y′′〉 + η ¯̄y′′ ¯̄y′′ , ηx′′y′′ = ηx̄′′ ȳ′′ = 1

1 + Tm
ηx̄′′ x̄′′ + Tm

1 + Tm
ηȳ′′ ȳ′′ . (E6)

We now use the Cauchy-Schwarz inequality with the last expression(
1

1 + Tm
ηx̄′′ x̄′′ + Tm

1 + Tm
ηȳ′′ ȳ′′

)2

� ηx̄′′ x̄′′ηȳ′′ ȳ′′ ,

which leads to

T 2
m ηȳ′′ ȳ′′ � ηx̄′′ x̄′′ � ηȳ′′ ȳ′′ . (E7)

Unlike the mRNA system of equations, we cannot solve Eq. (E6) for ηx̄′′ x̄′′ and ηȳ′′ ȳ′′ in terms of the measurable (co)variances
because the system is underdetermined. This is due to the fact that we have not specified the mRNA intrinsic system.
Nevertheless, we can derive an additional bound that will allow us to close the system of equations to write Eq. (E7) in terms of
the measurable (co)variances.

From Eqs. (E1) and (E5) we have

Var( ¯̄x′′) − Var(x̄′′) = 1

2π

∫ ∞

−∞

F[RFx − RF̄ ]

(1/τ ′′2 + ω2)(1 + ω2)
dω.

Now note that

RF̄ (t ) = E [E [�F (u(t ′), ux )|u[−∞, t ′]] · E [�F (u(t ′ + t ), ux )|u[−∞, t ′ + t]]]

= E [E [�F (u(t ′), ux )|u[−∞, t ′]] · E [�F (u(t ′ + t ), uy )|u[−∞, t ′ + t]]]

= E [E [�F (u(t ′), ux ) · �F (u(t ′ + t ), uy )|u[−∞, t ′ + t]]] = Cov(Fx(t ′), Fy(t ′ + t )) = RFx,Fy (t ),
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where the second step comes from the fact that Fx and Fy are statistically equivalent and the third step comes from the fact that
they are independent when we condition on the upstream history u[−∞, t]. Taking the autocovariance of Fx − Fy gives us

RFx−Fy = 2RFx − 2RFx,Fy = 2(RFx − RF̄ ).

Thus the requirement that we make for this class of systems, that the autocorrelation of Fx − Fy be non-negative, is equivalent to
saying that RFx − RF̄ is non-negative. Thus, we have

Var( ¯̄x′′) − Var(x̄′′) = 1

2π

∫ ∞

−∞

F[RFx − RF̄ ](
1

τ ′′2 + ω2
)
(1 + ω2)

dω, Var( ¯̄y′′) − Var(ȳ′′) = 1

2π

∫ ∞

−∞

F[RFy − RF̄ ](
1

τ ′′2 + ω2
)(

1 + T 2
m ω2

)dω.

Since the two intrinsic systems ux and uy are identical, we have RFx = RFy . Defining f := RFx − RF̄ , we have

[Var( ¯̄x) − Var(x̄)] − Tm[Var( ¯̄y) − Var(ȳ)]

= 1

2π

∫ ∞

−∞
F[ f ]

{
1

(1 + ω2)(1/τ ′′2 + ω2)
− Tm

[1 + (ωTm)2](1/τ ′′2 + ω2)

}
dω

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (t )cos(ωt )

{
1

(1/τ ′′2 + ω2)(1 + ω2)
− Tm

(1/τ ′′2 + ω2)[1 + (ωTm)2]

}
dt dω

= 1

2π

∫ ∞

−∞
f (t )

(∫ ∞

−∞

cos(ωt )

1/τ ′′2 + ω2

{
1

1 + ω2
− Tm

1 + (ωTm)2

}
dω

)
dt

= 1

π

∫ ∞

0
f (t )

(∫ ∞

−∞

cos(ωt )

1/τ ′′2 + ω2

{
1

1 + ω2
− Tm

1 + (ωTm)2

}
dω

)
dt

=
∫ ∞

0
f (t )τ ′′2

(
e−t − τ ′′e−t/τ ′′

1 − τ ′′2 − Tme−t/Tm − τ ′′e−t/τ ′′

T 2
m − τ ′′2

)
dt,

where in the second step we used the fact that f (t ) is sym-
metric, which lets us omit the sin(ωt ) part of the Fourier
transform, and in the fourth step we use the fact that the
integrand is symmetric in t . The expression in parenthe-
ses is always positive, and since f (t ) is non-negative, this
means that Tm[Var( ¯̄y) − Var(ȳ)] � [Var( ¯̄x) − Var(x̄)], which
in terms of the normalized variances is Tm(η ¯̄y′′ ¯̄y′′ − ηȳ′′ ȳ′′ ) �
(η ¯̄x′′ ¯̄x′′ − ηx̄′′ x̄′′ ). Similarly, we can show using the same method
that (η ¯̄x′′ ¯̄x′′ − ηx̄′′ x̄′′ ) � (η ¯̄y′′ ¯̄y′′ − ηȳ′′ ȳ′′ ). Combining these two in-
equalities, we have

Tm � η ¯̄x′′ ¯̄x′′ − ηx̄′′ x̄′′

η ¯̄y′′ ¯̄y′′ − ηȳ′′ ȳ′′
� 1. (E8)

With this inequality we can “close” the system of equations
(E6) to set the limits of ηx̄′′ x̄′′ and ηȳ′′ ȳ′′ in terms of the measur-
able (co)variances

ηx′′y′′ (1 + Tm) − Tm(ηy′′y′′ − ηx′′x′′ )

1 + Tm

� ηx̄′′ x̄′′ � (1 + Tm)ηx′′y′′ + ηx′′x′′ − Tmηy′′y′′

2
,

ηx′′y′′ (1 + Tm) − ηx′′x′′ + Tmηy′′y′′

2Tm

� ηȳ′′ ȳ′′ � ηx′′y′′ (1 + Tm) − ηx′′x′′ + ηy′′y′′

1 + Tm
. (E9)

We can then substitute these in the open-loop constraint (E7)
to obtain the open-loop constraint in terms of the measurable
(co)variances. Doing so, we obtain the left bound of Fig. 2(b).

Proof of the upper correlation bound. We use the law of
total variance to write

ηx′′x′′ = ηint,x′′ + ηx̄′′ x̄′′ , ηy′′y′′ = ηint,y′′ + ηȳ′′ ȳ′′ ,

where ηint,x′′ = 1
〈x′′〉2 E [Var(X ′′|u[−∞, t])] and ηint,y′′ =

1
〈y′′〉2 E [Var(Y ′′|u[−∞, t])]. Thus we have ηx′′x′′ � ηx̄′′ x̄′′ and
ηy′′y′′ � ηȳ′′ ȳ′′ . Substituting in Eq. (E2) gives

ηx′′y′′ (1 + Tm) � ηx′′x′′ + Tmηy′′y′′ ,

which after dividing by
√

ηx′′x′′ηy′′y′′ results in the upper corre-
lation bound.

APPENDIX F: DYNAMICS FROM STATIC FLUORESCENT
PROTEIN VARIABILITY

When there is no feedback, we can write down the
time-evolution equations for the averages of the conditional
probability space, and from these we can derive Eq. (E5). We
then have

Var( ¯̄y′′)

= 1

2π

∫ ∞

−∞

F[RFy ]

(1/τ ′′2 + ω2)(1 + ω2T 2
m )

dω

= 1

2π

∫ ∞

−∞

[∫ ∞

−∞
RFy (t )cos(ωt )dt

]

×
(

1

(1/τ ′′2 + ω2)[1 + (ωTm)2]

)
dω

= 1

2π

∫ ∞

−∞
RFy (t )

[∫ ∞

−∞

cos(ωt )

1/τ ′′2+ ω2

(
1

1+ (ωTm)2

)
dω

]
dt

= 1

π

∫ ∞

0
RFy (t )

[∫ ∞

−∞

cos(ωt )

1/τ ′′2 + ω2

(
1

1 + (ωTm)2

)
dω

]
dt

=
∫ ∞

0
RFy (t )τ ′′2

(
Tme−t/Tm − τ ′′e−t/τ ′′

T 2
m − τ ′′2

)
dt,
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where the second step comes from the fact that RFy (t ) is
symmetric, so we can omit the sin(ωt ) part of the Fourier
transform, and the fourth step comes from the fact that the
integrand is symmetric in t . We thus have, after normalizing
with the averages,

η ¯̄x′′ ¯̄x′′ =
∫ ∞

0
ηFF AFx (t )

(
τmat,xe−t/τmat,x − τ ′′e−t/τ ′′

τ 2
mat,x − τ ′′2

)
dt,

η ¯̄y′′ ¯̄y′′ =
∫ ∞

0
ηFF AFy (t )

(
τmat,ye−t/τmat,y − τ ′′e−t/τ ′′

τ 2
mat,y − τ ′′2

)
dt,

where AFx (t ) = AFy (t ) is the autocorrelation of the translation
rate F (u(t ), ux ). When AFx � 0, we find that the integrands of
the above integrals are always non-negative. Upon comparing
them we find that

Tmη ¯̄y′′ ¯̄y′′ � η ¯̄x′′ ¯̄x′′ .

Using Eq. (E4) and the fact that 〈x′′〉 = 〈y′′〉 from Eq. (D1),
the above inequality becomes Tmηy′′y′′ � ηx′′x′′ , which in terms
of the CVs becomes Eq. (5). Note that the exact same analysis
can be used to derive

Tmηȳ′′ ȳ′′ � ηx̄′′ x̄′′ , (F1)

which constrains the reporter (co)variances when the auto-
correlation of F̄ (t ) = E [F (u(t ), ux )|u[−∞, t]] is stochastic.
Note that F̄ (t ) is the translation rate when we average out
all the mRNA intrinsic fluctuations. This latter constraint will
be used in the section on stronger constraints on fluorescent
reporters using a third reporter.

APPENDIX G: BEHAVIOR OF SPECIFIC
EXAMPLE SYSTEMS

To gain an intuition for where systems fall in the allowable
region, we presented several example systems in the main
text. For example, the arrowed curves in Fig. 1(b) correspond
to two toy models subject to an upstream component Z that
undergoes Poisson fluctuations

z
λ−−−−−−→ z + 1, z

z/τz−−−−−−→ z − 1.

The blue curve in Fig. 1(b) corresponds to the system
R(u(t )) = kz, with k = 10, τx = 1, τy = T , and 〈z〉 = τzλ =
100. As we increase the speed of the upstream fluctuations by
decreasing τz, the dual-reporter correlations move downward
and left towards the bound of Eq. (4). This makes intuitive
sense because in that regime X and Y have little time to adjust
to changing Z levels and decorrelate.

In contrast, the gray curve in Fig. 1(b) corresponds to a
system with feedback of Y onto its own production, with
R(u(t )) = kz/(1 + εy), with k = 10, τx = 1, τy = T , τz = 1,
and 〈z〉 = 100. For ε = 0, we have no feedback and the gray
line coincides with the previous system (blue curve) with
〈x〉 = 〈y〉/T = 1000. As we increase the strength of the feed-
back ε, the correlations of this example system moves outside
the region constrained by Eq. (2) when ε > 0, 0.07, 0.01 for
T = 1, 0.5, 0.1, respectively. Maximizing the discriminatory
power of the approach corresponds to minimizing the area in
which systems without feedback could lie. Choosing T = 1 or
T � 1 would thus be ideal to detect feedback in this system.

In Fig. 3(c) the red curve corresponds to a system stochas-
tically driven through a Poisson variable Z with τz = 1, 〈z〉 =

100, and R(u(t )) = kz with k = 10 so that 〈x〉 = 1000. In
contrast, the blue curve corresponds to a system driven by
an oscillation with R(u(t )) = K[sin(ωt + φ) + 2], where φ

is a random variable that desynchronizes the ensemble and
K = 500 so that 〈x〉 = 1000. We set the oscillation period
2π/ω = 2τx to model an oscillation set by the cell cycle (for
example, the maturation time of mEGFP is roughly half of the
E. coli cell cycle [15]). We analyze both types of systems for
fixed τx = 1 while varying τy = T to see which choice of T
maximizes the discriminatory power of the constraint. We find
that for this particular example, the oscillating system crossed
the dashed black curve when ω = 1/

√
τxτy.

APPENDIX H: EFFECTS OF STOCHASTIC
UNDERCOUNTING ON DUAL-REPORTER

CORRELATIONS

1. Undercounting mRNA

First we analyze the effects of undercounting on mRNA
levels of coregulated genes. We would like to know how the
derived bounds change when the reporter abundances X and
Y are detected with fixed probabilities px and py, respectively.
This is done by introducing two new variables that correspond
to the experimental readouts of the reporter abundances: Xr

and Yr . In particular, Xr corresponds to the detected number of
X molecules when each molecule is detected with probability
px (and similarly for Yr and py). In terms of these variables,
open-loop systems are constrained by the inequalities

−
(

ηxr xr − py

px
T ηyr yr

)
� ηxr yr

(
py

px
− T

)
,

(
ηxr xr − py

px
T ηyr yr

)
� ηxr yr

(
1 − py

px
T

)
. (H1)

Systems that break this inequality must be connected in some
kind of feedback loop. When the detection probabilities are
the same for both reporters px = py, the constraint reduces
to the open-loop constraint given by Eq. (2). However, when
px �= py, the no-feedback bound differs from Eq. (2) due to
the py/px term. As we will see in a later section, this ratio can
be measured using a third reporter.

Moreover, open-loop systems that are driven by a stochas-
tic upstream signal must obey the inequality

py

px
T ηyr yr +

(1 + T )(1 − py

px
)

2
ηxr yr � ηxr xr . (H2)

Open-loop systems that break this bound must be driven
by some kind of oscillation. Note that when px = py, the
constraint reduces Eq. (4). However, when px �= py, the no-
oscillation bound differs from Eq. (4).

Derivation of Eqs. (H1) and (H2). We consider the fol-
lowing system, which is analogous to the class of systems
in Fig. 1(a) with the addition of a step which will model a
binomial readout of the components X and Y : arbitrary mRNA
dynamics

x
R(u(t ))−−−−−−→ x + 1, x

x/τx−−−−−−→ x − 1,

y
R(u(t ))−−−−−−→ y + 1, y

y/τy−−−−−−→ y − 1
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and the readout mock process

xr
λx (x−xr )−−−−−−→ xr + 1, xr

βxxr−−−−−−→ xr − 1,

yr
λy (y−yr )−−−−−−→ yr + 1, yr

βyyr−−−−−−→ yr − 1.

Here Xr and Yr correspond to the experimental readouts of
X and Y , respectively. For large values of λi and βi, the
components Xr and Yr correspond to binomial readouts of the
mRNA reporters X and Y , respectively. The component Xr

has a counting success rate of px = λx/(λx + βx ), i.e., each
X mRNA molecule has a probability of px to be detected
experimentally (similarly for Y and py). This approach again
allows for arbitrary mRNA dynamics and can be solved for
relations between (co)variances in exactly the same way as in
the previous sections.

In particular, once the first and second moments of this
system reach stationarity, general fluctuation-balance rela-
tions [18] lead to (co)variance relations, which in the limit
where βx � 1/τx and βy � 1/τy, but where px and py are
kept constant (this is not an approximation but is satisfied by
construction of the mathematical mock system to define Xr as
a binomial cut of X ), these (co)variance relations are

ηxr xr = 1

〈xr〉 + ηxR, ηyr yr = 1

〈yr〉 + ηyR,

ηxr yr = ηxy = 1

1 + T
ηxR + T

1 + T
ηyR. (H3)

These are identical to the (co)variances relations given by
Eq. (A4) which are for the variables X and Y , with the excep-
tion of the averages. Undercounting can only serve to further
decorrelate the reporter readouts, and so we would expect for
the upper bound on ρxy in Fig. 1(b) to hold for the readouts.
Indeed, from the above equations

ηxr yr = 1

1 + T
ηxr xr + T

1 + T
ηyr yr −

(
1

〈xr〉 + T

〈yr〉
)(

1

1 + T

)

� 1

1 + T
ηxr xr + T

1 + T
ηyr yr ,

which corresponds to the bound in Fig. 1(b). Note that the
bound holds for all detection probabilities.

Next we will generalize the open-loop constraints to the
system with the binomial readout step. The constraint on
open-loop systems derived for the system without the under-
counting steps still holds for the X and Y components, as
these do not depend in any way on Xr and Yr . In terms of the
conditional averages x̄ and ȳ, this bound is given by Eq. (B4).
We would now like to write ηx̄x̄ and ηȳȳ in terms of the readout
(co)variances to write this inequality in terms of ηxr xr , ηyr yr ,
and ηxr yr . Recall from Eq. (B2) that ηx̄x̄ = ηxR and ηȳȳ = ηyR,
so we need to solve for ηxR and ηyR in terms of the readout
(co)variances. First note that since Xr is a binomial readout of
X , we have 〈xr〉 = px〈x〉, and similarly for Y . As a result, the
flux-balance relation given by Eq. (A3) becomes

〈yr〉
〈xr〉 = T

py

px
. (H4)

We can now solve Eqs. (H3) and (H4) for ηxR and ηyR as we
have four equations and four unknowns

ηxR =
[
ηxr yr (1 + T ) − T ηyr yr

] py

px
+ ηxr xr

1 + py

px

,

ηyR =
ηxr yr (1 + T ) − ηxr xr + py

px
T ηyr yr

T
(
1 + py

px

) . (H5)

Note that when the detection probabilities are the same for
both reporters, these expressions become identical to those
that were derived without the undercounting step in Eq. (B5).
Recalling that ηxR = ηx̄x̄ and ηyR = ηȳȳ, we substitute Eq. (H5)
into Eq. (B4), which gives us the open-loop constraint given
by Eq. (H1).

Next we will generalize the no-oscillation bound to the sys-
tem with the binomial readout step. In terms of the conditional
averages of X and Y , the no-oscillation bound is given by
Eq. (C3). We then substitute the expressions from Eq. (H5)
into Eq. (C3) and this bound becomes Eq. (H2).

2. Undercounting fluorescent proteins

Next we analyze the effects of stochastic undercounting on
coregulated fluorescent proteins. This could model, for exam-
ple, fluorescent proteins with chromophores that sometimes
do not undergo maturation properly and thus are not detected.
Here we use the same approach as in the preceding section
by adding two additional variables X ′′

r and Y ′′
r that corre-

spond to the experimental readouts of the fluorescent proteins.
In particular, X ′′

r corresponds to the detected number of X ′′
molecules when each molecule is detected with probability
px, and similarly for Y ′′

r and py. In terms of these variables,
open-loop systems are constrained by the inequalities follow-
ing constraint

Tm

[
min

(
Tm,

py

px

)
ηy′′

r y′′
r
− ηx′′

r x′′
r

]
� ηx′′

r y′′
r

[
min

(
Tm,

py

px

)
− T 2

m

]
,

ηx′′
r x′′

r
− max

(
py

px
, 1

)
ηy′′

r y′′
r
�

[
1 − max

(
py

px
, 1

)]
ηx′′

r y′′
r
,

0 � ηx′′
r y′′

r
. (H6)

Systems that break this inequality must be connected in some
kind of feedback loop. When the detection probabilities are
the same for both reporters px = py, the constraint reduces to
Eq. (3).

Moreover, open-loop systems that are driven by a stochas-
tic upstream signal must obey the inequality[

Tm − min

(
Tm,

py

px

)]
ηx′′

r y′′
r
� ηx′′

r x′′
r
−min

(
Tm,

py

px

)
ηy′′

r y′′
r
.

(H7)

Open-loop systems that break this bound must be driven by
some kind of oscillation. When px = py, the constraint re-
duces to Eq. (5).

Derivation of Eqs. (H6) and (H7). We consider the fol-
lowing system, which is analogous to the class of systems in
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Fig. 7 with the addition of a step which will model a binomial
readout of the components X ′′ and Y ′′: arbitrary fluorescent
protein dynamics

x′ F (u(t ),x)−−−−−−→ x′ + 1, (x′, x′′)
x′/τmat,x−−−−−−→ (x′ − 1, x′′ + 1),

y′ F (u(t ),y)−−−−−−→ y′ + 1, (y′, y′′)
y′/τmat,y−−−−−−→ (y′ − 1, y′′ + 1),

x′′ x′′/τ ′′
−−−−−−→ x′′ − 1, y′′ y′′/τ ′′

−−−−−−→ y′′ − 1

and the readout mock process

x′′
r

λx (x′′−x′′
r )−−−−−−→ x′′

r + 1, x′′
r

βxx′′
r−−−−−−→ x′′

r − 1,

y′′
r

λy (y′′−y′′
r )−−−−−−→ y′′

r + 1, y′′
r

βyy′′
r−−−−−−→ y′′

r − 1.

Just like in the mRNA case, for large values of λi and βi the
additional readout steps model a mock process that turns X ′′

r
and Y ′′

r into instantaneous binomial readouts of the fluorescent
protein (FP) abundances X ′′ and Y ′′. Here X ′′

r corresponds to
the abundance of FPs that are fluorescing, where each X ′′ has
a probability px = λx/(λx + βx ) of having matured properly
(similarly for Y ′′

r ). Following the same steps as in the preced-
ing section, we get the (co)variance relations

ηx′′
r y′′

r
= ηx′′y′′ , ηx′′

r x′′
r

= 1

〈x′′
r 〉 + ηx′′x′ , ηy′′

r y′′
r
= 1

〈y′′
r 〉

+ ηy′′y′ .

(H8)

Moreover, since X ′′
r is a binomial readout of X ′′ we have

〈x′′
r 〉 = px〈x′′〉, and so from the above and the fluctuation-

balance equations given by Eq. (A4) we have

ηx′′
r x′′

r
= (1 − px )

〈x′′
r 〉 + ηx′′x′′ , ηy′′

r y′′
r
= (1 − py)

〈y′′
r 〉

+ ηxx. (H9)

As a result we have

ηx′′
r y′′

r
= ηx′′y′′ � 1

1 + Tm
ηx′′x′′ + Tm

1 + Tm
ηy′′y′′

� 1

1 + Tm
ηx′′

r x′′
r
+ Tm

1 + Tm
ηy′′

r y′′
r
,

where the second step is from the upper bound in Fig. 2(b)
given by ηx′′y′′ (1 + Tm) � ηx′′x′′ + Tmηy′′y′′ . In terms of the
readout reporter correlation and CVs, the above equations
correspond to the top bound in Fig. 2(b).

Next we will generalize the open-loop constraints to the
system with the binomial readout step. When there is no
feedback we can use Eq. (E6) along with Eqs. (H8) and (H9)
to write

ηx′′
r y′′

r
= 1

1 + Tm
ηx̄′′ x̄′′ + Tm

1 + Tm
ηȳ′′ ȳ′′ ,

ηx′′
r x′′

r
= 1

〈x′′
r 〉 + η ¯̄x′′ ¯̄x′′ , ηy′′

r y′′
r
= 1

〈y′′
r 〉

+ η ¯̄y′′ ¯̄y′′ . (H10)

Recall that in terms of the conditional averages x̄′′ and ȳ′′ the
open-loop constraint is given by Eq. (E7), which in combina-
tion with the first of Eqs. (H10) can be written as

Tmηȳ′′ ȳ′′ � ηx′′
r y′′

r
� ηȳ′′ ȳ′′ . (H11)

We generally cannot solve for ηx̄′′ x̄′′ and ηȳ′′ ȳ′′ in terms of ηx′′
r x′′

r
,

ηy′′
r y′′

r
, and ηx′′

r y′′
r

like we did for the previous case in Eq. (H5)
because the above system of equations is underdetermined.
However, we can derive bounds on these extrinsic contribu-
tions using the inequality (E8). Once the reporter averages
have reached stationarity, we have 〈x′′

r 〉 = py

px
〈y′′

r 〉. This bal-
ance relation, together with Eqs. (E8), (H10), and (E7), leads
to the following bounds on the extrinsic contributions:

max
( py

px
, 1

)
ηx′′

r y′′
r
(1 + Tm) − Tm

[
max

( py

px
, 1

)
ηy′′

r y′′
r
− ηx′′

r x′′
r

]
Tm + max

( py

px
, 1

) � ηx̄′′ x̄′′ , ηx̄′′ x̄′′ � ηx′′
r y′′

r
+

Tm
[
ηx′′

r x′′
r
− min

(
Tm,

py

px

)
ηy′′

r y′′
r

]
min

(
Tm,

py

px

) + Tm
,

ηx′′
r y′′

r
(1 + Tm) − ηx′′

r x′′
r
+ min

(
Tm,

py

px

)
ηy′′

r y′′
r

min
(
Tm,

py

px

) + Tm
� ηȳ′′ ȳ′′ , ηȳ′′ ȳ′′ �

ηx′′
r y′′

r
(1 + Tm) − ηx′′

r x′′
r
+ max

( py

px
, 1

)
ηy′′

r y′′
r

max
( py

px
, 1

) + Tm
. (H12)

Substituting the last two inequalities into Eq. (H11) leads to
the constraint given by Eq. (H6).

Next we will generalize the no-oscillation bound to the
system with the binomial readout step. Recall that, in terms
of the conditional averages, this bound is given by Eq. (F1).
Substituting the second and third inequalities from Eq. (H12),
we obtain the inequality given by Eq. (H7).

APPENDIX I: GENES WITH PROPORTIONAL
TRANSCRIPTION RATES

Here we consider the more general class of systems in
which two components are produced with arbitrary production
rates that are proportional with some proportionality constant
α. We find that the system becomes identical to the same sys-
tem in which α = 1 but where there is systematic undercount-
ing with unequal detection probabilities (see Appendix H).

We will first present the derived bounds for the α �= 1 case
followed by the derivations. Note that the results will depend
on the proportionality constant α, which can be measured
using a third reporter as shown Appendix J.

1. mRNA with proportional transcription rates

We consider the following class of systems which is analo-
gous to the class of systems in Fig. 1(a) with the exception that
now the transcription rates of the two mRNA are not equal but
proportional:

x
R(u(t ))−−−−−−→ x + 1, x

x/τx−−−−−−→ x − 1,

y
αR(u(t ))−−−−−−→ y + 1, y

y/τy−−−−−−→ y − 1. (I1)

First we will present the analog of the constraint on open-loop
systems given by Eq. (2). In particular, systems from the above
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class of systems in which the components X and Y do not
directly, or indirectly, affect their own transcription rate must
satisfy the inequalities

−(ηxx − αT ηyy) � ηxy(α − T ),

(ηxx − αT ηyy) � ηxy(1 − αT ). (I2)

Systems that break these inequalities must be connected in
some kind of feedback loop. Note that this equation is identi-
cal to Eq. (H1) with the replacement py

px
→ α.

Next we will present the analog of the constraint on
stochastic systems given by Eq. (4). Open-loop systems from
the above class in which the transcription rate is stochastic
must satisfy the inequality

αT ηyy + (1 + T )(1 − α)

2
ηxy � ηxx. (I3)

Open-loop systems that break this bound must be driven by
some kind of oscillation. Again, note that this equation is
identical to Eq. (H2) with the replacement py

px
→ α.

Derivation of Eqs. (I2) and (I3). Once the averages and
the (co)variances of the components X and Y reach station-
arity, general fluctuation-balance relations [18] lead to the
(co)variance relations

ηxx = 1

〈x〉 + ηxR, ηyy = 1

〈y〉 + ηyR,

ηxy = 1

1 + T
ηxR + T

1 + T
ηyR.

These are identical to the fluctuation-balance equations for the
analogous class of system with α = 1, given by Eq. (A4),
which is intuitively explained by the fact that we are
considering normalized (co)variances which cancel out the
proportionality constant. In fact, when the components X and
Y do not directly, or indirectly, affect their own transcrip-
tion rate, we can again condition on the upstream history, in
which case ηȳȳ is equal to the same value it would take when
α = 1, and so the open-loop constraint of Eq. (B4) and the
no-oscillation bound of Eq. (C3) hold for all α. However, the
averages will not have the same asymmetry as the α = 1 case.
In particular, once the averages reach stationarity we obtain
the flux-balance relations [18]

〈R〉 = 〈x〉/τx, α〈R〉 = 〈y〉/τy ⇒ 〈y〉
〈x〉 = αT, (I4)

which, with the above fluctuation-balance relations, are anal-
ogous to Eqs. (H3) and (H4) with the exchange py

px
→ α. The

following results thus follow:

ηx̄x̄ = ηxy(1 + T )α + ηxx − αT ηyy

1 + α
,

ηȳȳ = ηxy(1 + T ) − ηxx + αT ηyy

T (1 + α)
. (I5)

Substituting the above expressions into Eq. (B4) gives us
Eq. (I2), and substituting the above expressions into Eq. (C3)
gives us Eq. (I3).

2. Fluorescent proteins with proportional translation rates

We consider the class of systems

x′ F (u(t ),ux )−−−−−−→ x′ + 1, (x′, x′′)
x′/τmat,x−−−−−−→ (x′ − 1, x′′ + 1),

y′ αF (u(t ),uy )−−−−−−→ y′ + 1, (y′, y′′)
y′/τmat,y−−−−−−→ (y′ − 1, y′′ + 1),

x′′ x′′/τ ′′
−−−−−−→ x′′ − 1, y′′ y′′/τ ′′

−−−−−−→ y′′ − 1, (I6)

which is analogous to the class of systems in Fig. 7 with the
exception that now the translation rates of the two fluorescent
proteins are not equal but proportional with proportionality
constant α. First we will present the analog of the constraint
on open-loop systems given by Eq. (3). In particular, systems
from the above class of systems in which the downstream
components ux, uy, X ′, Y ′, X ′′, and Y ′′ do not directly, or
indirectly, affect their own transcription and translation rates
must satisfy the inequalities

min(Tm, α)ηy′′y′′ − ηx′′x′′ � ηx′′y′′

(
min(Tm, α) − T 2

m

Tm

)
,

ηx′′x′′ − max(α, 1)ηy′′y′′ � [1 − max(α, 1)]ηx′′y′′ ,

0 � ηx′′y′′ . (I7)

Systems that break these inequality must be connected in
some kind of feedback loop. Note that this equation is identi-
cal to Eq. (H6) with the exchange py

px
→ α.

Next we will present the analog of the constraint on
stochastic systems given by Eq. (5). In particular, systems
from the above class without feedback in which the translation
rate is stochastic must satisfy the inequality

[Tm − min(Tm, α)]ηx′′y′′ � ηx′′x′′ − min(Tm, α)ηy′′y′′ . (I8)

Open-loop systems that break this bound must be driven by
some kind of oscillation. Again, note that this equation is
identical to Eq. (H7) with the exchange py

px
→ α.

Derivation of Eqs. (I7) and (I8). Following the same anal-
ysis that was done in Appendix E, we can derive the exact
same equations as Eqs. (E6)–(E8), only now they apply to
(co)variances of the class of systems with α �= 1. These equa-
tions do not change when α �= 1 because we are considering
normalized (co)variances which cancel out the proportionality
constant. The flux-balance relation given by Eq. (D1) will be
different, however, as now one of the averages will be scaled
up or down by the factor α. In particular, at stationarity we
have the flux-balance relations [32]

〈x′′〉
τ ′′ = 〈x′〉

τmax,x
= 〈F 〉,

〈y′′〉
τ ′′ = 〈y′〉

τmax,y
= α〈F 〉 ⇒ 〈y′′〉

〈x′′〉 = α.

The system of equations becomes mathematically identical
to the system of equations we used to derive the bounds in
Appendix H with the exchanges py

px
→ α. Equations (I7) and

(I8) thus follow from the derivations in that Appendix where
we exchange py

px
→ α.
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3. Systematic undercounting of systems with
proportional transcription rates

We found in the previous Appendixes that the equations
from which we derive our bounds when α �= 1 are math-
ematically identical to the analogous equations when α =
1 but where each reporter is detected with a fixed prob-
ability such that α = py

px
. This is because in both these

cases the fluctuation-balance relations between the reporter
(co)variances remain unchanged compared to the original
class of systems, but the averages will change according to
Eqs. (H4) and (I4). Therefore, when α �= 1 and there is sys-
tematic undercounting such that py �= px, the only difference
in our equations would be that the averages scale differently.
In fact, the equations become analogous to those where there
is no systematic undercounting but where the transcription
rates are proportional with proportionality factor α̃ = α

py

px
. All

the bounds presented in Appendix I thus hold but with the
exchange α → α̃. This proportionality constant will often be
unknown, and so in the next Appendix we show how it can be
measured using a third reporter.

APPENDIX J: ADDITIONAL REPORTERS

1. Measuring unknown lifetime ratios

First, we will show how to measure the mRNA lifetime
ratio T using a third reporter. Recall that, for the class of
systems shown in Eq. (1), the following fluctuation-balance
relations given by Eq. (A4) must hold. We now allow for an
additional reporter Z in the system, where Z has a lifetime of
τz, is produced with the same probabilistic birthrate R(u(t )),
and is allowed to feedback and affect the cloud of components
u(t ). In such a case, any pair of components in X , Y , and
Z will have a fluctuation-balance relation like Eq. (A4). In
particular, we have

ηxx = 1

〈x〉 + ηxR, ηyy = 1

〈y〉 + ηyR, ηzz = 1

〈z〉 + ηzR,

ηxy = 1

1 + Tyx
ηxR + Tyx

1 + Tyx
ηyR,

ηyz = 1

1 + Tzy
ηyR + Tzy

1 + Tzy
ηzR,

ηxz = 1

1 + Tzx
ηxR + Tzx

1 + Tzx
ηzR,

where Ti j = τi/τ j . Recall that the averages are related here
by a flux balance 〈i〉/〈 j〉 = Ti j , which gives us three more
equations. If all we can measure are the reporter (co)variances,
we are left with nine unknowns: the three ηiR, the three aver-
ages 〈i〉, and the three lifetime ratios Ti j . This is a system of
nine linear equations, so we can solve for all unknowns. In
particular, we find

Ti j = η j j − η jk

ηii − ηik
for i, j, k ∈ {x, y, z}. (J1)

Note that the above expression depends only on the reporter
variances and the covariances. Three separate dual-reporter
experiments can thus be done to measure all the ηi j and
infer all the lifetime ratios. If only one lifetime ratio is being
measured, then only two experiments are needed as the above

expression only involves the covariance between two reporters
and their normalized variances.

Next we would like to derive a similar result for ratios
of fluorescent protein maturation times. This can be done by
using fluorescent reporters that all share the same (though
distinct) promoter. Since such reporters are not involved in
their regulation, we can use Eq. (E2), which holds for pairs X ′′
and Y ′′ of coregulated fluorescent reporters without feedback:

ηx′′y′′ = 1

1 + Tm
ηx̄′′ x̄′′ + Tm

1 + Tm
ηȳ′′ ȳ′′ .

As we increase the number of reporters, the number of such
equations increases faster than the number of unknowns, and
eventually we are able to solve for all the unknowns in terms
of the reporter (co)variances. Unlike the mRNA case, we
cannot use the other fluctuation-balance equations of the form
ηx′′x′′ = 1/〈x′′〉 + η ¯̄x′′ ¯̄x′′ because each of these equations adds
an additional unknown η ¯̄x′′ ¯̄x′′ to the system of equations. With
three reporters we thus do not have enough equations to
solve for all the unknowns. With four reporters, however, we
are able to solve for all maturation lifetimes given that we have
one of the lifetime ratios, and with five reporters we are able
to solve for all lifetime ratios.

2. Measuring birthrate proportionality constants
and reporter detection probabilities

In Appendix H we have shown how systematic undercount-
ing affects the derived results, and in Appendix I we have
shown how proportional production rates affect the derived
results. We found that both cases have the same effect and can
be treated together in full generality (Appendix I 3). That is,
when both are treated together we found that the constraints
presented in the main text change where now they also depend
on the factor α̃ = α

py

px
, where α is the proportionality constant

between the two production rates and py

px
is the ratio of de-

tection probabilities. Here we will show how this α̃ can be
measured using three dual-reporter experiments. The derived
bounds from the previous Appendixes can then be used with
asymmetrical systematic undercounting and with naturally
occurring proportional transcription rates.

Like the preceding section, we allow for an additional
reporter Z in the system, where the production rate of each
reporter is αiR for i ∈ {x, y, z}. Moreover, we allow for
stochastic undercounting where each reporter is detected with
fixed probability pi for i ∈ {x, y, z}. The reporter readouts
will have the fluctuation-balance relations (see Appendixes H
and I)

ηxr xr = 1

〈xr〉 + ηxR, ηyr yr = 1

〈yr〉 + ηyR,

ηzr zr = 1

〈zr〉 + ηzR, ηxr yr = 1

1 + Tyx
ηxR + Tyx

1 + Tyx
ηyR,

ηyr zr = 1

1 + Tzy
ηyR + Tzy

1 + Tzy
ηzR,

ηxr zr = 1

1 + Tzx
ηxR + Tzx

1 + Tzx
ηzR,

044406-22



INFERRING GENE REGULATION DYNAMICS FROM … PHYSICAL REVIEW E 104, 044406 (2021)

where Ti j = τi/τ j . As explained in Appendix I 3, these are
the exact same fluctuation-balance equations as Eq. (A4), but
now the averages will be related by 〈ir〉/〈 jr〉 = Ti j

α̃i
α̃ j

, where
α̃i = αi pi. When the lifetime ratios Ti j are known, this gives us

nine equations and nine unknowns (three ηiR, three averages
〈ir〉, and three α̃i ratios) and so we can solve for all the α̃i

ratios. In particular, we find

α̃i

α̃ j
= Tji

(
Tik + TjkTi j

Tjk + TikTji

)(
(Tik + TjkTi j )ηir ir − Tik (1 + Ti j )ηi j − (1 + Tik )ηik + (1 + Tik )η jk

(Tjk + TikTji )η jr jr − Tjk (1 + Tji )η ji − (1 + Tjk )η jk + (1 + Tjk )ηik

)
(J2)

for i, j, k ∈ {x, y, z}. If the lifetime ratios Ti j are not known,
then we have three additional unknowns and we have more un-
knowns than equations. However, including a fourth reporter
gives us four new unknowns, four additional unknowns (〈u〉,
α̃u, τu, and ηuR for a fourth reporter U ), and seven additional
equations analogous to the ones above, which means we can
solve the system of equations for four reporters for all the
lifetime ratios Ti j and the proportionality constants α̃i. Note
that only (co)variance measurements are needed, and so four
separate experiments involving two coregulated reporters can
be done to infer the α̃i.

For fluorescent proteins we cannot solve for the α̃ this way
because the system of equations will always be underdeter-
mined. However, once the averages reach stationarity, flux
balance leads to 〈x′′〉/〈y′′〉 = α, where the translation rate of
y′ is αF and that of x′ is F . If the experiments report absolute
numbers of molecules or concentrations, and the averages can
be measured, then α can be measured. However, averages are
often not known because fluorescence measurements involve
an unknown scaling factor between the numbers or concen-
trations and the light intensity. To get by this, one could do
two single-reporter experiments, where the same fluorescent
reporter is used for the two genes. The ratio of the two aver-
ages would then cancel out this unknown scaling factor and
would result in the actual ratio of components 〈x′′

1 〉/〈x′′
2 〉 = α̃,

from which α̃ can be inferred.

3. Stronger constraints on fluorescent reporters
using a third reporter

The open-loop constraint for fluorescent proteins given by
Eq. (3) encompasses a larger region in the ρxy and CVx/CVy

plane than the equivalent constraint for mRNA reporters given
by Eq. (2). This is due to the fact that there are unspecified
degrees of freedom in the class of fluorescent protein systems
that are unknown given the variability of two downstream
reporters. Specifically, the fluctuation-balance relations for
open-loop mRNA reporters are given by Eq. (B3),

ηxx = ηx,int + ηx̄x̄, ηyy = ηy,int + ηȳȳ,

ηxy = 1

1 + T
ηx̄x̄ + T

1 + T
ηȳȳ, (J3)

whereas the equivalent relations for fluorescent proteins are
given by

ηx′′x′′ = ηx′′,int + ηx̄′′ x̄′′ , ηy′′y′′ = ηy′′,int + ηȳ′′ ȳ′′ ,

ηx′′y′′ = 1

1 + Tm
ηx̄′′ x̄′′ + Tm

1 + Tm
ηȳ′′ ȳ′′ . (J4)

In both systems, the open-loop constraints on the conditional
averages are identical [see Eqs. (B4) and (E7)],

T 2ηx̄x̄ � ηx̄x̄ � ηx̄x̄, T 2
m ηx̄′′ x̄′′ � ηx̄′′ x̄′′ � ηx̄′′ x̄′′ . (J5)

The difference lies in the fact that the intrinsic system for the
mRNA reporters is specified as there is only one step down-
stream from the shared birthrate. Specifically, ηx,int = 1/〈x〉
and ηy,int = 1/〈y〉, and so ηx,int = T ηy,int. This last equation
allows us to solve Eq. (J3) for ηx̄x̄ and ηȳȳ in terms of the
measurable (co)variances, which allows us to take full ad-
vantage of the open-loop constraint given by Eq. (J5). For
fluorescent proteins this is not the case because the mRNA
intrinsic systems are not specified (for example, the half-lives
of the mRNA are not specified). As a result, we cannot close
the system of equations to solve for ηx̄′′ x̄′′ and ηȳ′′ ȳ′′ in terms of
measurable (co)variances. We can however bound the intrinsic
noise terms using Eq. (E8), which in addition to the open-loop
constraint of Eq. (J5) leads to the broader constrained region
shown in the main text. We can visualize this difference by
comparing the regions bounded by the open-loop constraints
in Figs. 1(b) and 2. Systems that lie on the ρ = 0 line are
dominated by intrinsic variability. For the mRNA region in
Fig. 1(b), these systems must lie at the point CVx/CVy = √

T ,
whereas for the FP region in Fig. 2(b) they can lie anywhere
within [

√
T , 1]. If the mRNA intrinsic systems were specified,

the relation between ηx′′,int and ηy′′,int would be specified and
systems on the ρ = 0 line would have to be located at some
point like in the mRNA class of systems. Here we show how
probing the system with a third fluorescent reporter allows us
to account for this missing degree of freedom. In particular,
we will show how with three reporters we can measure ηx̄′′ x̄′′

and ηȳ′′ ȳ′′ so that we can fully take advantage of the open-loop
constraint.

We allow for a third fluorescent protein reporter Z ′′ that
shares the same transcription rate and an identical mRNA
intrinsic system as X ′′ and Y ′′. We let the maturation time of
Z ′′ be τmat,z, and we let Tm,i j := τmat,i/τmat, j for i, j ∈ {x, y, z}.
When each reporter does not affect its own transcription or
translation rates, the rightmost fluctuation-balance relation
given by Eq. (J4) holds for each pair of reporters:

ηx′′y′′ = ηx̄′′ x̄′′

1 + Tm,yx
+ Tm,yxηȳ′′ ȳ′′

1 + Tm,yx
,

ηy′′z′′ = ηȳ′′ ȳ′′

1 + Tm,zy
+ Tm,zyηz̄′′ z̄′′

1 + Tm,zy
,

ηx′′z′′ = ηx̄′′ x̄′′

1 + Tm,zx
+ Tm,zxηz̄′′ z̄′′

1 + Tm,zx
. (J6)
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With three separate dual-reporter experiments, the three re-
porter covariances ηx′′y′′ , ηx′′z′′ , and ηy′′z′′ can be measured. If

the maturation time ratios Tm,i j are known, we have three
equations and three unknowns, and so we can fully solve for
ηx̄′′ x̄′′ , ηȳ′′ ȳ′′ , and ηz̄′′ z̄′′ ,

ηī′′ ī′′ = Tm,ik (1 + Tm,i j )ηi j + (1 + Tm,ik )ηik − (1 + Tm, jk )η jk

Tm,ik + Tm, jkTm,ik
where i, j, k ∈ {x, y, z}, (J7)

and so we can fully take advantage of the open-loop constraint given by Eq. (J5).

This is also the case for the constraint on stochastic systems
given by Eq. (5). In terms of the conditional averages, the
strongest form of this constraint is given by Eq. (F1),

Tmηȳ′′ ȳ′′ � ηx̄′′ x̄′′ . (J8)

Using the above approach, we can do three separate dual-
reporter experiments involving three pairs of fluorescent
reporters to solve for ηx̄′′ x̄′′ and ηȳ′′ ȳ′′ and fully take advantage
of the constraint given by Eq. (J8).

Note that ηx̄′′ x̄′′ is the variability in X ′′ that originates from
the shared cloud of components u(t ), so ηx′′x′′ − ηx̄′′ x̄′′ is the
intrinsic noise that originates from the random nature of the
transcription, translation, and maturation steps. The variance
can also be decomposed as ηx′′x′′ = 1

〈x′′〉 + η ¯̄x′′ ¯̄x, where 1
〈x′′〉 is

the intrinsic noise that originates from the translation and
maturation step and η ¯̄x′′ ¯̄x is the variability originating from
the intrinsic mRNA fluctuations as well as from the cloud of
components u(t ). If the protein abundances can be measured,
along with ηx̄′′ x̄′′ according to the above, then we can deter-
mine how much variability is generated through the different
steps of gene expression.

APPENDIX K: CONCENTRATIONS OF GROWING
AND DIVIDING CELLS

1. Derivation of Eqs. (2) and (4) for mRNA concentrations

In growing and dividing cells, the molecular abundances
still follow the same production and degradation reactions
during the cell cycle but are now affected by cell division.
In particular, considering systems as defined in Eq. (1), X
and Y share an unspecified birthrate R(u(t ),V ) which can
now depend on the cell volume V and the abundances of the
components u(t ). Furthermore, they are assumed to undergo
first-order degradation with lifetimes τx and τy, respectively.

However, now the cell volume increases and undergoes
cell division at times {ti}, which can vary over the cell en-
semble. At these moments the volume is reduced by a factor
V → aiV at ti, as we follow one of the daughter cells. For
perfect symmetric division, for example, we have a = 1

2 . To
allow for stochastic division errors in cell volume, we let the
ai vary over the ensemble and the division times through an
unspecified distribution; all we specify is that on average we
have 〈ai〉 = 1

2 . At the division times the cell content splits be-
tween the two daughter cells, and we assume that the mRNA
numbers are split according to a binomial distribution with
probability ai. This is summarized as

(V, x, y)
at time ti−−−−→ (aiV, B(x, ai ),B(y, ai )) for t1, t2, t3, . . . .

We first consider systems in which the cellular components
X and Y are affected by, but do not affect, the otherwise
unspecified environmental variables u(t ) and V . In this sce-
nario, we can analyze the average stochastic dual-reporter
dynamics conditioned on the history of their upstream in-
fluences [33]: x̄(t ) = E [Xt |u[−∞, t],V [−∞, t]] and ȳ(t ) =
E [Yt |u[−∞, t],V [−∞, t]]. Since all these systems have the
same volume history, they will all undergo division at the
same times {ti} with the same splitting factors {ai}. When
the systems are not at one of these division points, the time
evolution is specified completely by the reactions in Eq. (1).
In particular, for ti < t < ti+1, the time evolution of the condi-
tional averages is given by

dx̄

dt
= R(t ) − x̄

τx
,

dȳ

dt
=R(t ) − ȳ

τy
when ti < t < ti+1,

(K1)

where R(t ) = R(u(t )). At t = ti+1 we have V (ti+1) →
ai+1V (ti+1), x̄(ti+1) → ai+1x̄(ti+1), and ȳ(ti+1) → ai+1ȳ(ti+1).
This gives us the boundary conditions for the above differen-
tial equation.

Now we consider the stochastic concentrations, defined as
Xc := X/V and Yc := Y/V . Conditioned on the history of the
upstream influences and the volume, we have

x̄c(t ) = E

[
Xt

Vt

∣∣∣∣u[−∞, t],V [−∞, t]

]

= 1

V (t )
E [Xt |u[−∞, t],V [−∞, t]] = x̄

V (t )
,

where we can pull out the V (t ) from the expectation brackets
because it is specified by the conditioning and becomes equiv-
alent to a constant at time t . In ti < t < ti+1, we use Eq. (K1)
and the product rule to find

dx̄c

dt
= d

dt

(
x̄

V (t )

)
= Rc(t ) − xc

τx
− x̄c

V ′(t )

V (t )
, (K2)

where Rc := R/V is interpreted as the production rate of the
concentration Xc. At division time ti+1 we have x̄c → ai+1 x̄

ai+1V =
x̄c. Thus x̄c is unchanged at the division times and is continu-
ous, meaning Eq. (K2) holds for all t .

Equation (K2) holds for any volume dynamics. Here we
assume that cellular volume grows exponentially, i.e., V ′(t ) =
V (t ) ln(2)/τc, where τc is the average cell-cycle time of a cell.
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When this is the case Eq. (K2) becomes

dx̄c

dt
= Rc(t ) − xc

τxc

,
dȳc

dt
= Rc(t ) − yc

τyc

, (K3)

where τxc := ( 1
τx

+ ln(2)
τc

)−1 is the lifetime of the concentration
Xc and the second equation follows by symmetry with simi-
larly defined τyc .

Equation (K3) can be understood as a dilution approxi-
mation, which is exact for the conditional ensemble average.
Because it is mathematically identical to Eq. (B1), the same
bounds on the average dynamics follow. To relate the results
to the stochastic dynamics of Xc and Yc, we use the law of total
variance and Eq. (K3) to derive the (co)variance relations

ηxcxc = 〈xc/V 〉
〈xc〉2

+ ηx̄c x̄c , ηycyc = 〈yc/V 〉
〈yc〉2

+ ηȳc ȳc ,

ηxcyc = 1

1 + Tc
ηx̄c x̄c + Tc

1 + Tc
ηȳc ȳc (K4)

and the flux-balance relation

〈yc〉 = Tc〈xc〉, (K5)

where Tc := τyc/τxc [see below for a detailed derivation of
Eqs. (K4) and (K5)]. For systems where Rc(t ) does not vary
periodically as a function of the cell cycle, Xc and Yc are
independent of V (t ) and Eqs. (K4) and (K5) become math-
ematically identical to Eqs. (A4) and (A3), from which the
constraints derived for x̄ and ȳ are translated to X and Y .
Following the same steps as in Appendixes B and C thus
gives the same constraints, which concludes the proof that
bounds derived for molecular abundances of stochastically
driven systems in the class (1) also apply to their cellular
concentrations.

When the average dynamics of Xc and Yc is not independent
of V , i.e., when Rc(t ) is cell-cycle dependent, we cannot
close the system of equations given by Eqs. (K4) and (K5).
However, with a third reporter we are able to close the system
of equations to derive bounds similar to the ones presented
in the main text for molecular abundances as discussed in
Appendix K 3.

Derivation of Eqs. (K4) and (K5). Taking the ensemble
average of Eq. (K3) over all possible histories, we get

E

[
dx̄c

dt

]
= E [Rc(t )] − E [x̄c]

τxc

= 〈Rc〉 + 〈xc〉
τxc

.

Note that E [ dx̄c
dt ] = d

dt E [x̄c] = d
dt 〈xc〉, so once the averages

reach stationarity the left-hand side goes to zero and we are
left with the flux-balance relations

〈Rc〉 = 〈xc〉
τxc

, 〈Rc〉 = 〈yc〉
τyc

, (K6)

from which Eq. (K5) follows. Moreover, Eq. (K3) is identical
to analogous equations derived for the molecular numbers
[Eq. (B1)] and so we can follow the same analysis to derive
the expression

ηxcyc = 1

1 + Tc
ηx̄c x̄c + Tc

1 + Tc
ηȳc ȳc .

We now use the law of total variance to decompose ηxcxc

and ηycyc into two terms as

ηxcxc = E [Var(Xc|u[−∞, t],V [−∞, t])]
〈xc〉2

+ Var(E [Xc|u[−∞, t],V [−∞, t]])
〈xc〉2

= ηxc,int + ηx̄c x̄c ,

where we call the first term of the expansion ηxc,int. We thus
have

ηxcxc = ηxc,int + ηx̄c x̄c , ηycyc = ηyc,int + ηȳc ȳc ,

ηxcyc = 1

1 + Tc
ηx̄c x̄c + Tc

1 + Tc
ηȳc ȳc . (K7)

The intrinsic variance is given by
E [Var(Xc|u[−∞, t],V [−∞, t])], that is, it is the ensemble
average of the conditional variance. Consider the conditional
variance

Var(Xc|u[−∞, t], V [−∞, t])

= Var

(
X

V

∣∣∣∣u[−∞, t],V [−∞, t]

)

= 1

V (t )2
Var(X |u[−∞, t],V [−∞, t]).

We can thus find the conditional variance of X , divide the
result by V (t ), and then take the ensemble average to get
the intrinsic variance. To find the conditional variance of X ,
we consider an ensemble of N cells with the same histories
u[−∞, t] and V [−∞, t]. The variance of one of the cells, say,
X1, will give us Var(X |u[−∞, t],V [−∞, t]). To find this vari-
ance, we start by considering the total number of molecules
in the hypothetical ensemble X (N )

T = X1 + X2 + · · · + XN . We
now use the law of total variance conditioned on X (N )

T :

Var(X1) = E
[
Var

(
X1

∣∣X (N )
T

)] + Var
(
E

[
X1

∣∣X (N )
T

])
. (K8)

Note that the expectations and variances here are over the
hypothetical ensemble of cells with the same history. The trick
here is to notice that the death rate of each Xi is xi/τx, and so
the death rate of XT is xT /τx. This is equivalent to saying that
each molecule has a probability per unit time of degrading
given by 1/τx and this probability is independent of all other
molecules comprising XT or any of the Xi. Similarly, each
cell in this hypothetical ensemble has the same synchronized
birthrate R(t ), so the probability of some molecule in XT to
have been born in any of the cells is the same and indepen-
dent of how many X molecules are in each cell. Finally, the
process by which a molecule is degraded due to cell division
is also independent of all other molecules in each cell, as we
model cell division by a binomial spit where each molecule
has an equal and independent probability of remaining in
the cell. That is, each molecule has a probability 1/N of
being in X1 and this is independent of how many molecules
of XT we know are in X1. This is a binomial distribution
P(X1|X (N )

T ) = B(X (N )
T , 1/N ); therefore E [X1|X (N )

T ] = X (N )
T /N

and Var(X1|X (N )
T ) = E [X1|X (N )

T ](1 − 1/N ). Equation (K8)
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becomes

Var(X1) =
(

1 − 1

N

)
〈X1〉 + Var

(
X (N )

T

N

)
. (K9)

The Xi are independent and identically distributed random
variables. They thus obey the weak law of large numbers, so
the second term in Eq. (K9) goes to zero as N → ∞. Thus
Var(X1) = 〈X1〉 = E [X |u[−∞],V [−∞, t]], and so

Var(Xc|u[−∞, t], V [−∞, t])

= 1

V (t )2
E [X |u[−∞],V [−∞, t]]

= E

[
X

V 2

∣∣∣∣u[−∞],V [−∞, t]

]

= E

[
Xc

V

∣∣∣∣u[−∞],V [−∞, t]

]
.

We can now calculate the intrinsic variance of the real ensem-
ble, which we write in terms of the normalized variances

ηxc,int =
〈

Xc

V

〉
1

〈xc〉2
, ηyc,int =

〈
Yc

V

〉
1

〈yc〉2
, (K10)

which together with Eq. (K7) leads to Eq. (K4). When the
reporter concentrations are independent of the cell volume, Xc

will be independent of V , and so 〈Xc
V 〉 = 〈xc〉〈 1

V 〉, and similarly
for y, which gives us

ηxc,int =
〈

1

V

〉
1

〈xc〉 , ηyc,int =
〈

1

V

〉
1

〈yc〉 . (K11)

This equation and Eqs. (K3) and (K7) comprise the exact
same equations as Eqs. (A3), (B1), and (B3), from which
the bounds for the class of systems in Eq. (1) were derived.
The only difference is that now the (co)variances will be
for the molecular concentrations, and the lifetimes τxc and
τyc are for the concentrations as they include a contribution
due to dilution from the growing volume. Note that if Rc is
stochastic (nonoscillatory), then it must be independent of the
cell volume V , and so the bound on stochastic systems given
by Eq. (4) holds in general for concentrations.

2. Derivation of Eqs. (5) and (7) for volume-independent
fluorescent protein concentrations

Next we consider the analog of the class of systems in
Fig. 7. The fluorescent protein numbers are still described by
the reactions in Fig. 7, with the addition that the mRNA and
proteins are also each degraded by cell division

(V,z)
at time ti−−−−→(aiV, B(z, ai )) for t1,t2,. . . with z ∈ {x′,y′,x′′,y′′}.

When the fluorescent protein components X ′, X ′′, Y ′, and Y ′′
do not affect the environmental variables u(t ) and V , we can
analyze the average stochastic dual-reporter dynamics condi-
tioned on the history of their upstream influences

x̄′(t ) = E [X ′
t |u[−∞, t],V [−∞, t]],

ȳ′(t ) = E [Y ′
t |u[−∞, t],V [−∞, t]],

¯̄x′(t ) = E [X ′
t |u[−∞, t],V [−∞, t], ux[−∞, t]],

¯̄y′(t ) = E [Y ′
t |u[−∞, t],V [−∞, t], uy[−∞, t]].

We follow the same analysis as was done in the preceding
section to derive the differential equations

dx̄′
c

dt
= Fc(t ) − x̄′

c/τx′
c
,

dȳ′
c

dt
= Fc(t ) − ȳ′

c/τy′
c
,

dx̄′′
c

dt
= x̄′

c/τmat,x − x̄′′
c /τ ′′

c ,
dȳ′′

c

dt
= ȳ′

c/τmat,y − ȳ′′
c /τ

′′
c ,

(K12)
d ¯̄x′

c

dt
= Fx,c(t ) − ¯̄x′

c/τx′
c
,

d ¯̄y′
c

dt
= Fy,c(t ) − ¯̄y′

c/τy′
c
,

d ¯̄x′′
c

dt
= ¯̄x′

c/τmat,x − x̄′′
c /τ ′′

c ,
d ¯̄y′′

c

dt
= ¯̄y′

c/τmat,y − ȳ′′
c /τ

′′
c ,

(K13)

where τx′
c
= ( 1

τmat,x
+ ln(2)

τc
)−1, τ ′′

c = ( 1
τ ′′ + ln(2)

τc
)−1, Fc(t ) =

1
V (t ) E [F (u(t ), ux )|u[−∞, t],V [−∞, t]], and Fx,c = 1

V (t )
F (u(t ), ux (t )). We take the ensemble average of Eq. (K12)
over the different histories, which once the first moments
reach stationarity leads to the flux-balance relations

〈x′′
c 〉/τ ′′

c = τx′
c

τmat,x
〈Fc〉, 〈y′′

c 〉/τ ′′
c = τy′

c

τmat,y
〈Fc〉. (K14)

Equations (K12) and (K13) are identical to the analogous dif-
ferential equations derived in the molecular number system,
with the exception that the degradation time of x̄′

c is given by
τx′

c
instead of τmat,x due to the added degradation that comes

from dilution from the growing volume. Nevertheless, we can
follow the same analysis to derive the expression

ηx′′
c y′′

c
= ηx̄′′

c ȳ′′
c
= 1

1 + T c
m

ηx̄′′
c x̄′′

c
+ T c

m

1 + T c
m

ηȳ′′
c ȳ′′

c
, (K15)

where T c
m := τy′

c
/τx′

c
. The last four equations are mathe-

matically identical to the analogous equations derived for
coregulated fluorescent proteins without feedback, from
which, along with Eq. (E4), we derived the bounds in the fluo-
rescent protein system. We thus need to show that an equation
identical to Eq. (E4) holds for the reporter concentrations.
From there the constraints follow from our previous proofs.
To do this, we can use the law of total variance to decompose
the variance of Xc by conditioning on the history of u, V , and
ux, which gives us

Var(X ′′
c )

= E [Var(X ′′
c |ux[−∞, t], u[−∞, t],V [−∞, t])]+ Var( ¯̄x′′

c ).

We would now like to apply the same analysis as was done
for the mRNA concentration system in order to derive an ex-
pression for the first term on the right-hand side. We thus look
at an ensemble of N cells with the same histories u[−∞, t],
V [−∞, t], and ux[−∞, t], which corresponds to each cell
having the same synchronized translation rate F (t ). In such a
case, we use the same trick as was done for the mRNA system
in the preceding section to show

E [Var(X ′′
c |ux[−∞, t], u[−∞, t],V [−∞, t])] =

〈
X ′′

c

V

〉
.

When the reporter concentrations are independent of the cell
volume, we have 〈Xc

V 〉 = 〈 1
V 〉〈x′′

c 〉, and so in terms of the
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normalized variances we have

ηx′′
c x′′

c
=

〈
1

V

〉
1

〈x′′
c 〉 + η ¯̄x′′

c
¯̄x′′
c
, ηy′′

c y′′
c
=

〈
1

V

〉
1

〈y′′
c 〉

+ η ¯̄y′′
c

¯̄y′′
c
.

(K16)

This is the equation that we were seeking as it is mathe-
matically analogous to Eq. (E4). The factor in front of the
average terms does not change the analysis as it is only the
ratio of these terms that came into our derivations. This ratio
is different than in the molecular numbers system due to the
added degradation that comes from dilution from the growing
volume. In particular,

ηx′′
c x′′

c
− η ¯̄x′′

c
¯̄x′′
c

ηy′′
c y′′

c
− η ¯̄y′′

c
¯̄y′′
c

= T c
m

Tm
. (K17)

We can follow the exact same steps as was done for the
fluorescent protein number system to derive the analogous
constraints in terms of the reporter concentrations. The only
difference would be in the rightmost open-loop bound which
shifts as a result of this added dilution degradation of the
immature protein concentrations.

3. Volume-dependent genes: Exact constraints
using a third reporter

We were unable to formally prove the open-loop constraint
for volume-dependent genes. Mathematically, the problem
lies in the fact that when the reporter concentrations are vol-
ume dependent, the intrinsic terms ηxc,int and ηyc,int are given
by Eq. (K10) and not by Eq. (K11). These introduce two
new unknowns to the system of equations, namely, 〈Xc

V 〉 1
〈xc〉2

and 〈Yc
V 〉 1

〈yc〉2 , which makes the system of equations underde-
termined. When the concentrations are volume independent,
Eqs. (K6) and (K11) imply that the ratio of intrinsic noise
terms are given by ηxc,int/ηyc,int = Tc, which allows us to close
the system of equations and solve for ηx̄c x̄c and ηȳc ȳc in terms
of the measurable (co)variances which are bounded by the
sought-after constraints. Note that

√
ηxc,int/ηyc,int sets the point

along the ρxcyc line in Fig. 4(b) (left panel) where the orange
lines converge. For volume-dependent concentrations, numer-
ical simulations show that

√
ηxc,int/ηyc,int �= √

Tc, but it holds
to a good approximation with a divergence of up to around 6%
for the specific models that we simulated.

Though we cannot prove the open-loop constraint using
two reporters, we can infer the missing degree of freedom by
introducing an additional reporter into the system and derive
an open-loop constraint on volume-dependent genes. In par-
ticular, Eqs. (B4) and (C3) still hold in terms of concentrations
of growing and dividing cells (similarly for the fluorescent
reporters), even when the reporter concentrations are cell-
volume dependent. It is only because the ηxc,int and ηyc,int

terms become more complicated for volume-dependent sys-
tems that we cannot close the system of equations and solve
for ηx̄c x̄c and ηȳc ȳc in terms of the measurable (co)variances.
Thus, if we can measure ηx̄c x̄c and ηȳc ȳc then we can take
full advantage of the constraints. With a third reporter we are
able to solve for ηx̄c x̄c and ηȳc ȳc in terms of the measurable
(co)variances as explained in Appendix J 3. In that Appendix
we showed how to measure ηx̄′′ x̄′′ and ηȳ′′ ȳ′′ using three separate
dual-reporter experiments involving three dual-reporter pairs,

but the exact same reasoning can be used to measure ηx̄c x̄c

and ηȳc ȳc (or the fluorescent protein equivalents), as the same
covariance equations used in that Appendix hold exactly for
the reporter concentrations. Thus, even if we are unable to for-
mally prove the open-loop constraint for volume-dependent
systems with two reporters, with a third reporter we are able
to measure the missing degree of freedom to prove the con-
straint.

APPENDIX L: EXPERIMENTAL DATA ANALYSIS

Balleza et al. quantified the maturation dynamics of 50
different fluorescent proteins in E. coli using time-lapse mi-
croscopy [15]. Their data show that the maturation step of
roughly a third of the tested FPs are well described by first-
order kinetics as assumed in our class of gene expression
models. Additionally, the authors quantified heterogeneity in
fluorescence levels when the respective FPs were expressed
under the constitutive promoter proC. These data were ob-
tained from flow-cytometry measurements of clonal E. coli
MG1655 (CGSC 6300) populations in M9-rich media at
37 ◦C. From their publicly available raw cell-to-cell hetero-
geneity data [36], we selected the ten FPs that were best
modeled by first-order maturation kinetics (see the Supple-
mental Material [34]).

Fluorescent protein abundance CVs were obtained from
the reported flow-cytometry fluorescence distributions. Under
the assumption that reporter concentrations are cell-volume
independent, i.e., transcription rates are cell-cycle indepen-
dent, then the concentration CVs are related to the CVs in
abundances and the CV in cell volume CVV [25]:

CV2
concentration = CV2

abundance

1 + CV2
V

− CV2
V

1 + CV2
V

. (L1)

We estimated CVV using separate time-lapse microscopy data
that quantifies E. coli growth dynamics [37]. From the pub-
licly available time traces of E. coli length we computed an
average volume variability of E. coli MG1655 (CGSC 6300)
grown in lysogeny broth media of CVV = 0.261 ± 0.005.
The resulting concentration variability data are presented in
Fig. 4(c) and a complete list of concentration CVs obtained
this way along with the chosen FPs and their maturation times
are presented in Table 1 in the Supplemental Material [34].

As shown in Fig. 8, all fluorescent protein pairs fall within
the region expected for constitutively expressed genes, with
the exception of mEGFP. The data fall along the right orange
bound given by the right inequality in Eq. (8). According
to Eq. (K14), systems that lie along this boundary satisfy
CVx′′

c
/CVy′′

c
= √〈y′′

c 〉/〈x′′
c 〉, where x′′

c and y′′
c denote the con-

centrations of the fluorescent proteins. Systems that lie along
this bound thus have CVs that scale inversely with the square
root of the averages. According to Eq. (K16), the concentra-
tion CVs are given by

CV2
x′′

c
=

〈
1

V

〉
1

〈x′′
c 〉 +

∫ ∞

0
ηFF AFxc

(t )

×
(

τmat,xe−t/τmat,x − τ ′′
c e−t/τ ′′

c

τ 2
mat,x − τ ′′2

c

)
dt, (L2)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 8. Utilizing constraints on flow-cytometry data from constitutively expressed fluorescent proteins. Here we plot all of the possible
pairs from Table 1 in the Supplemental Material [34]. We plot nine separate plots instead of combining the data into a single plot because for
a given T c

m the right bound given by Eq. (8) is only determined if we specify one of the maturation times. Thus, for a fixed Y reporter, the
right bound is well defined for any given X reporter, with the yellow corridor indicating the estimated uncertainty in τc and τmat,y. Because
all fluorescent proteins were constitutively expressed and were not fused to cellular proteins, we expect the experimental data to be consistent
with the class of gene expression models that do not exhibit feedback and are not periodically driven (pink region). All variability ratios with
respect to all reference fluorescence proteins confirm the above picture with the exception for mEGFP (with ratios indicated in red) for which
the data violate the expected behavior. With the exception of the indicated mEGFP outlier, all data fall along the right-hand boundary.

where Fxc is the production rate of the immature protein con-
centrations. The first term on the right, which scales inversely
to the average, corresponds to noise that originates at the
translation step, the maturation step, fluctuations in protein
degradation, and binomial splitting of proteins at cell division.
The term on the right corresponds to noise that originates from
transcription as well as mRNA and translation rate fluctua-
tions. Therefore, data that lie along the right orange boundary
in Fig. 8 correspond to variability with negligible transcription
noise contributions.

In order to confirm this observation and also analyze the
mEGFP discrepancy, we plot in Fig. 8 the fluorescent protein
concentration CVs as a function of their maturation times. In
the regime where the second term on the right-hand side of
Eq. (L2) is negligible and where we assume that the fluores-
cent protein concentrations are degraded solely by dilution
from the growing and dividing cells, we can use Eq. (K14)

to write

CVx′′
c

= A

√
ln(2)

τc

(
1 + ln(2)

τmat,x

τc

)
, (L3)

where A =
√

〈 1
V 〉 1

〈F 〉 is an unknown parameter. From this

equation we see that as the maturation time gets larger, so does
the CV. This is because as the maturation time gets larger, the
fraction of matured proteins is reduced, which results in larger
intrinsic fluctuations that originate from the maturation step
and from cell partitioning of matured proteins. On the other
hand, we can look at the regime in which there is negligible
translation noise [where the second term on the right-hand
side of Eq. (L2) dominates]. We model the autocorrelation
of the protein concentration translation rate as a decaying
exponential AFxc

(t ) = e−t/τF and we assume that the protein
concentrations are degraded solely from dilution, in which
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FIG. 9. The data are best described by a model with negligible
transcription noise. Plotted are the concentration CVs from Table 1
of the Supplemental Material [34] as a function of their respective
fluorescent protein maturation times. The pink curve corresponds
to the model given by Eq. (L3) with A = 1.3 and τc as reported
in [15]: 28.5 ± 2 min. The pink corridor indicates the result of the
uncertainty in τc. The blue curve corresponds to the model given by
Eq. (L4) in which translation noise is negligible, with B = 1.2, τF =
28.5/10 min, and τc = 28.5 ± 2 min. We find that the data follow the
pink curve and are thus best described by the negligible transcription
noise model. The data point with the smallest CV corresponds to
mEGFP, and the dashed red curve corresponds to the same model as
the pink curve but with τc increased by a factor of 1.25. A possible
explanation for this relatively low CV observed for mEGFP is that
the cell cultures expressing mEGFP had slightly slower growth rates.

case we have

CVx′′
c

= B

√
τF

[
τ ′′

c τx′
c
+ τF

(
τ ′′

c + τx′
c

)]
(τF + τ ′′

c )
(
τF + τx′

c

)(
τ ′′

c + τx′
c

) , (L4)

where τ ′′
c = τc/ ln(2), τx′

c
= [1/τmat,x + ln(2)/τc]−1, and B =√

ηFF is an unknown parameter. In Fig. 9 we plot Eqs. (L3)
and (L4) with A = 1.3, B = 1.2, τF = τc/10, and τc = 28.5 ±
2 min (as reported in [15]). We find that the computed
CVs from the flow-cytometry data sets are well described
by Eq. (L3), except for the mEGFP point, which displays a
CV smaller than the others. The only parameter left in this
model to vary is the division time of the cells τc. When this
parameter is changed to 35.6 min, the model captures the
mEGFP data point as shown by the dashed curve in Fig. 9. The
discrepancy between mEGFP and the other nine fluorescent
proteins could thus be explained by a slightly slower growth
rate in the cell cultures used for the mEGFP data sets. The
blue curve, on the other hand, corresponds to the negligible
translation noise model given by Eq. (L4). We find that as
the maturation time gets larger, the CV gets smaller, which is
expected as fluorescent proteins with large maturation times
have less time to adjust to varying upstream fluctuations and
inherit less variability.

The previous analysis indicates that the variability is
dominated by noise originating from the translation step, mat-
uration step, fluctuations in protein degradation, and noise
originating from binomial splitting of protein numbers at
cell divisions, which are all described by the first term on
the right-hand side in Eq. (L2). However, it is possible that
measurement noise which scales inversely with the average
is contributing to the measured variability. For example, in
[25] it was shown that flow-cytometry measurements contain
a significant amount of measurement noise when used with
bacteria due to their small size. This measurement noise was
shown to scale inversely with the average of the fluorescence
signal, meaning it could mask itself as biological variabil-
ity contributing to the first term on the right-hand side of
Eq. (L2). In [25] a rigorous method was developed to measure
the true CVs using flow cytometry on bacteria, separating
measurement noise and autofluorescence contributions using
commonly used calibration beads.
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